Identification and Validation of Operational Pain Indicators in Anurans
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- West, J. Importance of Amphibians: A Synthesis of Their Environmental Functions, Benefits to Humans, and Need for Conservation. Bachelor’s Thesis, Bridgewater State University, Bridgewater, MA, USA, 2018. [Google Scholar]
- Hocking, D.; Babbitt, K. Amphibian contributions to ecosystem services. Herpetol. Conserv. Biol. 2014, 9, 1–17. [Google Scholar]
- Valencia-Aguilar, A.; Cortés-Gómez, A.M.; Ruiz-Agudelo, C.A. Ecosystem services provided by amphibians and reptiles in Neotropical ecosystems. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2013, 9, 257–272. [Google Scholar] [CrossRef]
- Kurtz, J.; Scharsack, J.P. Resistance is skin-deep: Innate immunity may help amphibians to survive a deadly fungus. Anim. Conserv. 2007, 10, 422–424. [Google Scholar] [CrossRef]
- IUCN. State of the World’s Amphibians; IUCN: Gland, Switzerland, 2023. [Google Scholar]
- Yin, S.; Wang, Y.; Yang, X. Amphibian-derived wound healing peptides: Chemical molecular treasure trove for skin wound treatment. Front. Pharmacol. 2023, 14, 1120228. [Google Scholar] [CrossRef]
- Womack, M.C.; Steigerwald, E.; Blackburn, D.C.; Cannatella, D.C.; Catenazzi, A.; Che, J.; Koo, M.S.; McGuire, J.A.; Ron, S.R.; Spencer, C.L.; et al. State of the amphibia 2020: A review of five years of amphibian research and existing resources. Ichthyol. Herpetol. 2022, 110, 638–661. [Google Scholar] [CrossRef]
- Mi, C.; Ma, L.; Yang, M.; Li, X.; Meiri, S.; Roll, U.; Oskyrko, O.; Pincheira-Donoso, D.; Harvey, L.P.; Jablonski, D.; et al. Global Protected Areas as refuges for amphibians and reptiles under climate change. Nat. Commun. 2023, 14, 1389. [Google Scholar] [CrossRef]
- Wake, D.B.; Vredenburg, V.T. Colloquium paper: Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl. Acad. Sci. USA 2008, 105 (Suppl. 1), 11466–11473. [Google Scholar] [CrossRef]
- Luedtke, J.A.; Chanson, J.; Neam, K.; Hobin, L.; Maciel, A.O.; Catenazzi, A.; Borzée, A.; Hamidy, A.; Aowphol, A.; Jean, A.; et al. Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 2023, 622, 308–314. [Google Scholar] [CrossRef]
- Griffiths, R.A.; Pavajeau, L. Captive breeding, reintroduction, and the conservation of amphibians. Conserv. Biol. 2008, 22, 852–861. [Google Scholar] [CrossRef]
- Tapley, B.; Bradfield, K.S.; Michaels, C.; Bungard, M. Amphibians and conservation breeding programmes: Do all threatened amphibians belong on the ark? Biodivers. Conserv. 2015, 24, 2625–2646. [Google Scholar] [CrossRef]
- Berec, M.; Šindelářová, M.; Bagaturov, M.F. Amphibians in Czech zoological gardens—Trends and implications for conservation. Biologa 2017, 72, 1347–1354. [Google Scholar] [CrossRef]
- Kohn, B. Zoo animal welfare. Rev. Sci. Tech.—Off. Int. Épizoot. 1994, 13, 233–245. [Google Scholar] [CrossRef]
- Browne, R.K.; Odum, R.A.; Herman, T.; Zippel, K. Facility design and associated services for the study of amphibians. ILAR J. 2007, 48, 188–202. [Google Scholar] [CrossRef]
- Minteer, B.A.; Collins, J.P. Ecological ethics in captivity: Balancing values and responsibilities in zoo and aquarium research under rapid global change. ILAR J. 2013, 54, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Greenwell, P.J.; Riley, L.M.; Lemos de Figueiredo, R.; Brereton, J.E.; Mooney, A.; Rose, P.E. The societal value of the modern zoo: A commentary on how zoos can positively impact on human populations locally and globally. J. Zool. Bot. Gard. 2023, 4, 53–69. [Google Scholar] [CrossRef]
- Rutherford, K.M.D. Assessing pain in animals. Anim. Welf. 2002, 11, 31–53. [Google Scholar] [CrossRef]
- Stevens, C.W. Analgesia in amphibians: Preclinical studies and clinical applications. Vet. Clin. N. Am. Exot. Anim. Pract. 2011, 14, 33–44. [Google Scholar] [CrossRef]
- Guénette, S.A.; Giroux, M.-C.; Vachon, P. Pain perception and anaesthesia in research frogs. Exp. Anim. 2013, 62, 87–92. [Google Scholar] [CrossRef]
- Prunier, A.; Mounier, L.; Le Neindre, P.; Leterrier, C.; Mormède, P.; Paulmier, V.; Prunet, P.; Terlouw, C.; Guatteo, R. Identifying and monitoring pain in farm animals: A review. Animal 2013, 7, 998–1010. [Google Scholar] [CrossRef]
- Reid, J.; Scott, M.; Nolan, A.; Wiseman-Orr, L. Pain assessment in animals. Practice 2013, 35, 51–56. [Google Scholar] [CrossRef]
- Steagall, P.V.; Bustamante, H.; Johnson, C.B.; Turner, P.V. Pain management in farm animals: Focus on cattle, sheep and pigs. Animals 2021, 11, 1483. [Google Scholar] [CrossRef]
- Diggles, B.K.; Arlinghaus, R.; Browman, H.I.; Cooke, S.J.; Cooper, R.L.; Cowx, I.G.; Derby, C.D.; Derbyshire, S.W.; Hart, P.J.B.; Jones, B.; et al. Reasons to be skeptical about sentience and pain in fishes and aquatic invertebrates. Rev. Fish. Sci. Aquac. 2024, 32, 127–150. [Google Scholar] [CrossRef]
- Sneddon, L.U. Comparative physiology of nociception and pain. Physiology 2018, 33, 63–73. [Google Scholar] [CrossRef]
- Sneddon, L.U.; Elwood, R.W.; Adamo, S.A.; Leach, M.C. Defining and assessing animal pain. Anim. Behav. 2014, 97, 201–212. [Google Scholar] [CrossRef]
- Stevens, C.W.; Martin, K.K.; Stahlheber, B.W. Nociceptin produces antinociception after spinal administration in amphibians. Pharmacol. Biochem. Behav. 2009, 91, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Elwood, R.W. Pain and suffering in invertebrates? ILAR J. 2011, 52, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, L.M.; Johnson, S.M.; Sladky, K.K. Comparison of thermal and mechanical noxious stimuli for testing analgesics in White’s Tree Frogs (Litoria caerulea) and Northern Leopard Frogs (Lithobates pipiens). J. Am. Assoc. Lab. Anim. Sci. 2021, 60, 687–691. [Google Scholar] [CrossRef]
- Stevens, C.W. Opioid research in amphibians: An alternative pain model yielding insights on the evolution of opioid receptors. Brain Res. Rev. 2004, 46, 204–215. [Google Scholar] [CrossRef]
- Posner, L.P.; Chinnadurai, S.K. Recognition and treatment of pain in reptiles, amphibians, and fish. In Pain Management in Veterinary Practice; John Wiley & Sons, Ltd: Chichester, UK, 2014; pp. 417–423. [Google Scholar]
- Evangelista, M.C.; Watanabe, R.; Leung, V.S.Y.; Monteiro, B.P.; O’Toole, E.; Pang, D.S.J.; Steagall, P.V. Facial expressions of pain in cats: The development and validation of a Feline Grimace Scale. Sci. Rep. 2019, 9, 19128. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Beths, T. Grimace scores: Tools to support the identification of pain in mammals used in research. Animals 2020, 10, 1726. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Hernández, E.; Martínez-Burnes, J.; Whittaker, A.L. The utility of grimace scales for practical pain assessment in laboratory animals. Animals 2020, 10, 1838. [Google Scholar] [CrossRef]
- Pathak, S.; Patil, P.; Harti, H.; Dixit, R. A modified method for evaluating analgesic activity of drugs using Rana tigrina frog. Int. J. Basic. Clin. Pharmacol. 2014, 3, 496. [Google Scholar] [CrossRef]
- Sneddon, L.U.; Roques, J.A.C. Pain recognition in fish. Vet. Clin. N. Am. Exot. Anim. Pract. 2023, 26, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tallo-Parra, O.; Salas, M.; Manteca, X. Zoo animal welfare assessment: Where do we stand? Animals 2023, 13, 1966. [Google Scholar] [CrossRef]
- Cowen, R.; Stasiowska, M.K.; Laycock, H.; Bantel, C. Assessing pain objectively: The use of physiological markers. Anaesthesia 2015, 70, 828–847. [Google Scholar] [CrossRef]
- Tornabene, B.J.; Hossack, B.R.; Crespi, E.J.; Breuner, C.W. Evaluating corticosterone as a biomarker for amphibians exposed to increased salinity and ambient corticosterone. Conserv. Physiol. 2021, 9, coab049. [Google Scholar] [CrossRef]
- Machin, K.L. Amphibian pain and analgesia. J. Zoo. Wildl. Med. 1999, 30, 2–10. [Google Scholar]
- Lambert, H.; Elwin, A.; D’Cruze, N. Frog in the well: A review of the scientific literature for evidence of amphibian sentience. Appl. Anim. Behav. Sci. 2022, 247, 105559. [Google Scholar] [CrossRef]
- Cortés Pérez, E.; Maldonado Reséndiz, R.I. Welfare indices in anurans under human care. J. Zool. Bot. Gard. 2023, 4, 613–622. [Google Scholar] [CrossRef]
- Jones, N.; Sherwen, S.L.; Robbins, R.; McLelland, D.J.; Whittaker, A.L. Welfare assessment tools in zoos: From theory to practice. Vet. Sci. 2022, 9, 170. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.L.; Cronin, K.A. Doing better for understudied species: Evaluation and improvement of a species-general animal welfare assessment tool for zoos. Appl. Anim. Behav. Sci. 2023, 264, 105965. [Google Scholar] [CrossRef]
- Miller, L.J.; Chinnadurai, S.K. Beyond the five freedoms: Animal welfare at modern zoological facilities. Animals 2023, 13, 1818. [Google Scholar] [CrossRef]
- Brando, S.; Norman, M. Handling and training of wild animals: Evidence and ethics-based approaches and best practices in the modern zoo. Animals 2023, 13, 2247. [Google Scholar] [CrossRef] [PubMed]
- Villarroya, A.; Miranda, R.; Pino-Del-Carpio, A.; Casas, M. Social perception of zoos and aquariums: What we know and how we know it. Animals 2024, 14, 3671. [Google Scholar] [CrossRef]
- Fraser, D. Toward a synthesis of conservation and animal welfare science. Anim. Welf. 2010, 19, 121–124. [Google Scholar] [CrossRef]
- Birch, J. Animal sentience and the precautionary principle. Anim. Sentience 2017, 16, 100. [Google Scholar] [CrossRef]
- Beausoleil, N.J.; Mellor, D.J.; Baker, L.; Baker, S.E.; Bellio, M.; Clarke, A.S.; Dale, A.; Garlick, S.; Jones, B.; Harvey, A.; et al. “feelings and fitness” not “feelings or fitness”-the Raison d’être of Conservation Welfare, which aligns conservation and animal welfare objectives. Front. Vet. Sci. 2018, 5, 296. [Google Scholar] [CrossRef]
- Boone, H.; Boone, D. Analyzing Likert data. J. Ext. 2012, 50, 48. [Google Scholar] [CrossRef]
- Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 1932, 22, 55. [Google Scholar]
- Jamieson, S. Likert scales: How to (ab)use them. Med. Educ. 2004, 38, 1217–1218. [Google Scholar] [CrossRef] [PubMed]
- EFSA. EFSA Panel on Animal Health and Welfare. Scientific Opinion on the use of animal-based measures to assess welfare of dairy cows. EFSA J. 2012, 10, 2554–2635. [Google Scholar] [CrossRef]
- EFSA. Guidance on Risk Assessment for Animal Welfare. EFSA J. 2012, 10, 2513. [Google Scholar] [CrossRef]
- Hasson, F.; Keeney, S.; McKenna, H. Research guidelines for the Delphi survey technique. J. Adv. Nurs. 2000, 32, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, G.M.; Artino, A.R., Jr. Analyzing and interpreting data from likert-type scales. J. Grad. Med. Educ. 2013, 5, 541–542. [Google Scholar] [CrossRef]
- Fetters, M.D.; Curry, L.A.; Creswell, J.W. Achieving integration in mixed methods designs-principles and practices. Health Serv. Res. 2013, 48, 2134–2156. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; SAGE Publications: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Broom, D.M. A history of animal welfare science. Acta Biotheor. 2011, 59, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Mellor, D.J. Updating animal welfare thinking: Moving beyond the “Five Freedoms” towards “A life worth living”. Animals 2016, 6, 21. [Google Scholar] [CrossRef]
- Benn, A.L.; McLelland, D.J.; Whittaker, A.L. A review of welfare assessment methods in reptiles, and preliminary application of the Welfare Quality® Protocol to the pygmy blue-tongue skink, Tiliqua adelaidensis, using animal-based measures. Animals 2019, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Pessier, A.P. Infectious diseases of amphibians. In Current Therapy in Reptile Medicine and Surgery; Elsevier: Amsterdam, The Netherlands, 2014; pp. 247–254. [Google Scholar]
- Wright, K.M.; Whitaker, B.R. Amphibian Medicine and Captive Husbandry; Krieger Publishing Company: Melbourne, FL, USA, 2001; p. 499. [Google Scholar]
- Heatwole, H.; Johnston, P. Amphibian Biology: Volume 1: The Integument; Surrey Beatty & Sons: Chipping Norton, Australia, 1998; Volume 1. [Google Scholar]
- Arena, P.C.; Warwick, C.; Steedman, C. Welfare and environmental implications of farmed sea turtles. J. Agric. Environ. Ethics 2014, 27, 309–330. [Google Scholar] [CrossRef]
- Hawkins, P.; Morton, D.B.; Burman, O.; Dennison, N.; Honess, P.; Jennings, M.; Lane, S.; Middleton, V.; Roughan, J.V.; Wells, S.; et al. A guide to defining and implementing protocols for the welfare assessment of laboratory animals: Eleventh report of the BVAAWF/FRAME/RSPCA/UFAW Joint Working Group on Refinement. Lab. Anim. 2011, 45, 1–13. [Google Scholar] [CrossRef]
- Keating, S.C.J.; Thomas, A.A.; Flecknell, P.A.; Leach, M.C. Evaluation of EMLA cream for preventing pain during tattooing of rabbits: Changes in physiological, behavioural and facial expression responses. PLoS ONE 2012, 7, e44437. [Google Scholar] [CrossRef] [PubMed]
- Berger, L.; Speare, R.; Daszak, P.; Green, D.E.; Cunningham, A.A.; Goggin, C.L.; Slocombe, R.; Ragan, M.A.; Hyatt, A.D.; McDonald, K.R.; et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl. Acad. Sci. USA 1998, 95, 9031–9036. [Google Scholar] [CrossRef] [PubMed]
- Duffus, A.L.J.; Waltzek, T.B.; Stöhr, A.C.; Allender, M.C.; Gotesman, M.; Whittington, R.J.; Hick, P.; Hines, M.K.; Marschang, R.E. Distribution and Host Range of Ranaviruses. In Ranaviruses; Springer International Publishing: Cham, Switzerland, 2015; pp. 9–57. [Google Scholar]
Indicator | Risk (%) | Magnitude (%) | Applicability (%) | Composite Score (%) |
---|---|---|---|---|
Feeding behaviour changes | 71.0 | 71.0 | 66.0 | 69.0 |
Abnormal behaviour | 78.0 | 75.0 | 74.0 | 75.0 |
Impaired locomotion | 71.0 | 70.0 | 77.0 | 74.0 |
Presence of oedema | 72.0 | 67.0 | 65.0 | 67.0 |
Reduced movement | 78.0 | 74.0 | 79.0 | 78.0 |
Retained skin post-moulting | 61.0 | 54.0 | 66.0 | 62.0 |
Altered respiration | 71.0 | 71.0 | 67.0 | 69.0 |
All others (<60%) | — | — | — | <60.0 |
Indicator | Observability (%) | Ease of Measurement (%) | Mean Field Score (%) |
---|---|---|---|
Feeding behaviour changes | 100.0 | 100.0 | 100.0 |
Oedema | 100.0 | 75.0 | 88.0 |
Abnormal behaviour | 100.0 | 99.0 | 100.0 |
Impaired locomotion | 100.0 | 100.0 | 100.0 |
Reduced movement | 100.0 | 99.0 | 100.0 |
Retained skin post-moulting | 100.0 | 75.0 | 88.0 |
Altered respiration | 100.0 | 79.0 | 90.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, S.; Caiozzi, A.; Cabeza, O.; Cañon-Jones, H. Identification and Validation of Operational Pain Indicators in Anurans. J. Zool. Bot. Gard. 2025, 6, 49. https://doi.org/10.3390/jzbg6040049
González S, Caiozzi A, Cabeza O, Cañon-Jones H. Identification and Validation of Operational Pain Indicators in Anurans. Journal of Zoological and Botanical Gardens. 2025; 6(4):49. https://doi.org/10.3390/jzbg6040049
Chicago/Turabian StyleGonzález, Stefany, Andrea Caiozzi, Osvaldo Cabeza, and Hernan Cañon-Jones. 2025. "Identification and Validation of Operational Pain Indicators in Anurans" Journal of Zoological and Botanical Gardens 6, no. 4: 49. https://doi.org/10.3390/jzbg6040049
APA StyleGonzález, S., Caiozzi, A., Cabeza, O., & Cañon-Jones, H. (2025). Identification and Validation of Operational Pain Indicators in Anurans. Journal of Zoological and Botanical Gardens, 6(4), 49. https://doi.org/10.3390/jzbg6040049