Predatory Responses and Feeding Behaviour of Three Elasmobranch Species in an Aquarium Setting
Abstract
:1. Introduction
1.1. Integrated Welfare Approach in Aquariums
1.2. Care Routine
1.3. Study Objectives
- Is there a specific time of day that is more favourable for these species to interact with the feeding methods?
- What is the most appropriate feeding method for each species, taking into account their natural predatory tendencies (opportunistic vs. selective)?
2. Materials and Methods
2.1. Study Area and Sample
2.2. Species under Study
2.3. Regular Feeding Routine
2.4. Sampling Methods
- –
- Morning session: 8:30/9:00 am (lights off to simulate night-time conditions)
- –
- Afternoon session: 2:30/3:00 pm (lights on to replicate daytime conditions)
- –
- Evening session: 5:00/5:30 pm (lights off to recreate night-time conditions)
2.5. Feeding Methods
2.6. Data Analysis
3. Results
3.1. Preliminary Analysis
3.2. Preferred Daily Period
3.3. Feeding Method Preference
4. Discussion
4.1. Preferred Period of the Day
4.2. Preferred Feeding Method
4.2.1. T. obesus
4.2.2. C. melanopterus
4.2.3. P. violacea
4.3. Overall Considerations and Applications
5. Conclusions
Limitations and Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Species under Study | Examples of Interactions | |
---|---|---|
T. obesus | Pole/Buoys | Swimming in close proximity to the method (within <1 m), altering the swimming path towards the method, circling the method, and touching the method with/without removing and/or ingesting the prey. |
PVC | Entering/exiting the method, swimming in close proximity to the method (within <1 m), altering the swimming path towards the method, circling the method, and touching the method with/without removing and/or ingesting the prey. | |
C. melanopterus | Pole/Buoys | Swimming in close proximity to the method (within <1 m), altering the swimming path towards the method, circling the method, and touching the method with/without removing and/or ingesting the prey. |
PVC | Swimming in close proximity to the method (within <1 m), altering the swimming path towards the method, and circling the method. | |
P. violacea | Pole/Buoys | Swimming in close proximity to the method (within <1 m), altering the swimming path towards the method, embracing the method, and touching the method with/without removing and/or ingesting the prey. |
PVC | Swimming in close proximity to the method (within <1 m), altering the swimming path towards the method, and standing stationary on top of or near the method. |
References
- Ferretti, F.; Worm, B.; Britten, G.L.; Heithaus, M.R.; Lotze, H.K. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 2010, 13, 1055–1071. [Google Scholar] [CrossRef] [PubMed]
- Vignaud, T.M.; Mourier, J.; Maynard, J.A.; Leblois, R.; Spaet, J.L.Y.; Clua, E.; Neglia, V.; Planes, S. Blacktip reef sharks, Carcharhinus melanopterus, have high genetic structure and varying demographic histories in their Indo-Pacific range. Mol. Ecol. 2014, 23, 5193–5207. [Google Scholar] [CrossRef] [PubMed]
- Baum, J.K.; Myers, R.A. Shifting baselines and the decline of pelagic sharks in the Gulf of Mexico. Ecol. Lett. 2004, 7, 135–145. [Google Scholar] [CrossRef]
- Jordan, L.K.; Mandelman, J.W.; McComb, D.M.; Fordham, S.V.; Carlson, J.K.; Werner, T.B. Linking sensory biology and fisheries bycatch reduction in elasmobranch fishes: A review with new directions for research. Conserv. Physiol. 2013, 1, cot002. [Google Scholar] [CrossRef]
- Wheeler, C.R.; Gervais, C.R.; Johnson, M.S.; Vance, S.; Rosa, R.; Mandelman, J.W.; Rummer, J.L. Anthropogenic stressors influence reproduction and development in elasmobranch fishes. Rev. Fish Biol. Fish. 2020, 30, 373–386. [Google Scholar] [CrossRef]
- Pratt, H.L.; Gruber, S.H.; Taniuchi, T. Elasmobranchs as living resources: Advances in the biology, ecology, systematics, and the status of the fisheries. NOAA Tech. Rep. 1990, 90. [Google Scholar]
- Kent, B.W. The cartilaginous fishes (chimaeras, sharks, and rays) of Calvert Cliffs, Maryland, USA. The Geology and Vertebrate Paleontology of Calvert Cliffs, Maryland, USA. Smithson. Contrib. Paleobiol. 2018, 100, 45–157. [Google Scholar]
- EAZA. EAZA Standards for the Accommodation and Care of Animals in Zoos and Aquaria; EAZA: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Sabalones, J. Considerations on the husbandry of sharks for display purposes. Int. Zoo Yearb. 1995, 34, 77–87. [Google Scholar] [CrossRef]
- Tristram, H.; Thomas, S.; Junior, L.S. Husbandry of scalloped hammerhead sharks Sphyrna lewini (Griffith & Smith, 1834) at Reef HQ Aquarium, Townsville, Australia. Der Zool. Gart. 2014, 83, 93–113. [Google Scholar]
- Watters, J.V.; Krebs, B.L.; Eschmann, C.L. Assessing Animal Welfare with Behavior: Onward with Caution. J. Zool. Bot. Gard. 2021, 2, 75–87. [Google Scholar] [CrossRef]
- Hoopes, L.A. Elasmobranch Mineral and Vitamin Requirements. In The Elasmobranch Husbandry Manual II: Recent Advances in the Care of Sharks, Rays and their Relatives; Smith, M., Warmolts, D., Thoney, D., Hueter, R., Murray, M., Ezcurra, J., Eds.; Ohio Biological Survey: Columbus, OH, USA, 2017; pp. 135–146. [Google Scholar]
- Lipej, L.; Mavric, B.; Paliska, D.; Capapé, C. Feeding habits of the pelagic stingray Pteroplatytrygon violacea (Chondrichthyes: Dasyatidae) in the Adriatic Sea. J. Mar. Biol. Assoc. United Kingd. 2013, 93, 285–290. [Google Scholar] [CrossRef]
- Papastamatiou, Y.P.; Watanabe, Y.Y.; Bradley, D.; Dee, L.E.; Weng, K.; Lowe, C.G.; Caselle, J.E. Drivers of Daily Routines in an Ectothermic Marine Predator: Hunt Warm, Rest Warmer? PLoS ONE 2015, 10, 29–47. [Google Scholar] [CrossRef] [PubMed]
- Corgos, A.; Rosende-Pereiro, A. First record of the whitetip reef shark, Triaenodon obesus from the coast of Jalisco, western Mexico mainland. Mar. Biodivers. Rec. 2016, 9, 66. [Google Scholar] [CrossRef]
- Hobson, E.S. Feeding behavior in three species of sharks. Pac. Sci. 1961, 17, 171–193. [Google Scholar]
- Papastamatiou, Y.P.; Caselle, J.E.; Friedlander, A.M.; Lowe, C.G. Distribution, size frequency, and sex ratios of blacktip reef sharks Carcharhinus melanopterus at Palmyra Atoll: A predator-dominated ecosystem. J. Fish Biol. 2009, 75, 647–654. [Google Scholar] [CrossRef]
- Speed, C.W.; Meekan, M.G.; Field, I.C.; McMahon, C.R.; Bradshaw, C.J. Heat-seeking sharks: Support for behavioural thermoregulation in reef sharks. Mar. Ecol. Prog. Ser. 2012, 463, 231–244. [Google Scholar] [CrossRef]
- Mourier, J.; Vercelloni, J.; Planes, S. Evidence of social communities in a spatially structured network of a free-ranging shark species. Anim. Behav. 2011, 83, 389–401. [Google Scholar] [CrossRef]
- Mourier, J.; Mills, S.C.; Planes, S. Population structure, spatial distribution and life-history traits of blacktip reef sharks Carcharhinus melanopterus. J. Fish Biol. 2013, 82, 979–993. [Google Scholar] [CrossRef]
- Randall, J.E. Contribution to the biology of the whitetip reef shark (Triaenodon obesus). Pac. Sci. 1977, 31, 143–164. [Google Scholar]
- Whitney, N.M.; Papastamatiou, Y.P.; Holland, K.N.; Lowe, C.G. Use of an acceleration data logger to measure diel activity patterns in captive whitetip reef sharks, Triaenodon obesus. Aquat. Living Resour. 2007, 24, 299–305. [Google Scholar] [CrossRef]
- Whitney, N.M.; Pyle, R.L.; Holland, K.N.; Barcz, J.T. Movements, reproductive seasonality, and fisheries interactions in the whitetip reef shark (Triaenodon obesus) from community-contributed photographs. Environ. Biol. Fishes 2012, 93, 121–136. [Google Scholar] [CrossRef]
- Forselledo, R.; Pons, M.; Miller, P.; Domingo, A. Distribution and population structure of the pelagic stingray, Pteroplatytrygon violacea (Dasyatidae), in the south-western Atlantic. Aquat. Living Resour. 2008, 21, 357–363. [Google Scholar] [CrossRef]
- Varghese, S.P.; Somvanshi, V.S.; Dalvi, R.S. Diet composition, feeding niche partitioning and trophic organisation of large pelagic predatory fishes in the eastern Arabian Sea. Hydrobiologia 2014, 736, 99–114. [Google Scholar] [CrossRef]
- Mulvany, S.; Motta, P.J. Prey Capture Kinematics in Batoids Using Different Prey Types: Investigating the Role of the Cephalic Lobes. J. Exp. Zool. 2014, 321A, 515–530. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.R.; Johnson, R.H. Behavior of the reef sharks of Rangiroa, French Polynesia. Natl. Geogr. Soc. Res. Rep. 1980, 12, 479–499. [Google Scholar]
- Milsom, W.K.; Taylor, E.T.W. Control of breathing in elasmobranchs. Fish Physiol. 2015, 34, 83–126. [Google Scholar]
- Labourgade, P.; Ballesta, L.; Huveneers, C.; Papastamatiou, Y.; Mourier, J. Heterospecific foraging associations between reef-associated sharks: First evidence of kleptoparasitism in sharks. Ecology 2020, 101, 11. [Google Scholar] [CrossRef]
- Jordan, L.K. Comparative morphology of stingray lateral line canal and electrosensory systems. J. Morphol. 2008, 269, 1325–1339. [Google Scholar] [CrossRef]
- Wetherbee, B.M.; Gruber, S.H.; Cortés, E. Diet feeding habits, digestion and consumption in sharks, with special reference to the lemon shark. Negrapion brevirostris. NOAA Tech. Rep. 1990, 90, 29–47. [Google Scholar]
- Flowers, K.I.; Heithaus, M.R.; Papastamatiou, Y.P. Buried in the sand: Uncovering the ecological roles and importance of rays. Fish Fish. 2021, 22, 105–127. [Google Scholar] [CrossRef]
- Lawrence, K.; Sherwen, S.L.; Larsen, H. Natural Habitat Design for Zoo-Housed Elasmobranch and Teleost Fish Species Improves Behavioural Repertoire and Space Use in a Visitor Facing Exhibit. Animals 2021, 11, 2979. [Google Scholar] [CrossRef]
- Chamove, A.S.; Hosey, G.R.; Schaetzel, P. Visitors excite primates in zoos. Zoo Biol. 1988, 7, 359–369. [Google Scholar] [CrossRef]
- Rose, P.E.; Brereton, J.E.; Rowden, L.J.; de Figueiredo, R.L.; Riley, L.M. What’s new from the zoo? An analysis of ten years of zoo-themed research output. Palgrave Commun. 2019, 5, 128. [Google Scholar] [CrossRef]
- Semeniuk, C.A.; Rothley, K.D. Costs of group-living for a normally solitary forager: Effects of provisioning tourism on southern stingrays Dasyatis americana. Mar. Ecol. Prog. Ser. 2008, 357, 271–282. [Google Scholar] [CrossRef]
- Von der Emde, G.; Bell, C.C. Active electrolocation and its neural processing in mormyrid electric fishes. In Sensory Processing in Aquatic Environments; Collin, S.P., Marshall, N.J., Eds.; Springer: New York, NY, USA, 2003; pp. 92–107. [Google Scholar]
T. obesus | C. melanopterus | P. violacea | ||||
---|---|---|---|---|---|---|
Period | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) |
Morning | 1.70 (2.20) | 1.00 (0.00–3.00) | 0.54 (1.17) | 0.00 (0.00–1.00) | 6.35 (4.71) | 6.00 (3.00–7.75) |
Afternoon | 0.44 (0.78) | 0.00 (0.00–1.00) | 0.46 (1.37) | 0.00 (0.00–0.00) | 7.08 (5.52) | 6.00 (3.00–10.00) |
Evening | 0.83 (1.47) | 0.00 (0.00–1.00) | 0.85 (1.96) | 0.00 (0.00–1.00) | 5.91 (5.17) | 5.00 (2.00–8.75) |
T. obesus | C. melanopterus | P. violacea | ||||
---|---|---|---|---|---|---|
Method | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) |
Pole | 2.20 (2.55) | 1.00 (0.00–4.00) | 0.20 (0.41) | 0.00 (0.00–0.00) | 9.80 (5.91) | 7.00 (6.25–14.50) |
Long buoy | 1.30 (1.81) | 0.50 (0.00–2.75) | 0.55 (1.23) | 0.00 (0.00–0.75) | 6.95 (4.20) | 6.50 (3.50–8.75) |
Short buoy | 1.45 (2.01) | 0.50 (0.00–2.75) | 0.55 (1.32) | 0.00 (0.00–0.00) | 5.15 (2.56) | 5.50 (3.25–6.00) |
PVC | 1.85 (2.41) | 1.50 (0.00–2.00) | 0.85 (1.42) | 0.00 (0.00–1.00) | 3.50 (3.22} | 3.00 (1.00–5.75) |
T. obesus | C. melanopterus | P. violacea | ||||
---|---|---|---|---|---|---|
Prey | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) |
Atl. Mackerel | 0.94 (1.83) | 0.00 (0.00–2.00) | 0.17 (0.52) | 0.00 (0.00–0.00) | 9.06 (7.00) | 7.50 (3.25–12.75) |
Eur. Squid | 0.44 (1.05) | 0.00 (0.00–0.00) | 0.96 (2.02) | 0.00 (0.00–0.75) | 6.85 (4.69) | 6.50 (4.00–9.75) |
Eur. Flying Squid | 0.92 (1.37) | 0.00 (0.00–2.00) | 1.15 (1.58) | 0.00 (0.00–2.00) | 5.65 (5.21) | 4.00 (2.00–7.00) |
Atl. Herring | 1.15 (1.85) | 0.00 (0.00–2.00) | 0.31 (0.70) | 0.00 (0.00–0.00) | 6.56 (4.58) | 6.00 (3.25–9.00) |
Atl. Horse Mackerel | 1.50 (1.97) | 0.50 (0.00–2.75) | 0.12 (0.49) | 0.00 (0.00–0.00) | 5.13 (4.19) | 4.50 (2.00–7.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, S.; Neves, J.; Tirá, G.; Andrade, J.P. Predatory Responses and Feeding Behaviour of Three Elasmobranch Species in an Aquarium Setting. J. Zool. Bot. Gard. 2023, 4, 775-787. https://doi.org/10.3390/jzbg4040055
Costa S, Neves J, Tirá G, Andrade JP. Predatory Responses and Feeding Behaviour of Three Elasmobranch Species in an Aquarium Setting. Journal of Zoological and Botanical Gardens. 2023; 4(4):775-787. https://doi.org/10.3390/jzbg4040055
Chicago/Turabian StyleCosta, Sandra, João Neves, Gonçalo Tirá, and José Pedro Andrade. 2023. "Predatory Responses and Feeding Behaviour of Three Elasmobranch Species in an Aquarium Setting" Journal of Zoological and Botanical Gardens 4, no. 4: 775-787. https://doi.org/10.3390/jzbg4040055
APA StyleCosta, S., Neves, J., Tirá, G., & Andrade, J. P. (2023). Predatory Responses and Feeding Behaviour of Three Elasmobranch Species in an Aquarium Setting. Journal of Zoological and Botanical Gardens, 4(4), 775-787. https://doi.org/10.3390/jzbg4040055