Assessing Biogas from Wastewater Treatment Plants for Sustainable Transportation Fuel: A Detailed Analysis of Energy Potential and Emission Reductions
Abstract
:1. Introduction
Biogas Composition and Purification Technologies
2. Adana Wastewater Treatment Plants
3. Materials and Methods
4. Results
4.1. Economic Feasibility: Cost Comparison of Biogas and Diesel
4.2. Environmental Impact Analysis
4.2.1. Long-Term Benefits for Air Quality and Climate Change Mitigation
4.2.2. Risks and Limitations
4.2.3. Policy Implications and Future Outlook
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- You, V.; Kakinaka, M. Modern and Traditional Renewable Energy Sources and CO2 Emissions in Emerging Countries. Environ. Sci. Pollut. Res. 2022, 29, 17695–17708. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, H.; Samborska, V.; Roser, M. Urbanization. Available online: https://ourworldindata.org/urbanization (accessed on 28 November 2024).
- Aydin, K.; Ün, Ç. Development of Solid Waste Management System for Adana Metropolitan Municipality. In Exergy for a Better Environment and Improved Sustainability, 2nd ed.; Aloui, F., Dincer, I., Eds.; Green Energy and Technology; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Luttenberger, L.R. Waste Management Challenges in Transition to Circular Economy—Case of Croatia. J. Clean. Prod. 2020, 256, 120495. [Google Scholar] [CrossRef]
- Tshemese, Z.; Deenadayalu, N.; Linganiso, L.Z.; Chetty, M. An Overview of Biogas Production from Anaerobic Digestion and the Possibility of Using Sugarcane Wastewater and Municipal Solid Waste in a South African Context. Appl. Syst. Innov. 2023, 6, 13. [Google Scholar] [CrossRef]
- Song, G.; Li, Y. The Effect of Reinforcing the Concept of Circular Economy in West China Environmental Protection and Economic Development. Procedia Environ. Sci. 2012, 12, 785–792. [Google Scholar] [CrossRef]
- Ün, Ç. Enhancing Sewage Sludge Treatment with Hydrothermal Processing: A Case Study of Adana City. Sustainability 2024, 16, 4174. [Google Scholar] [CrossRef]
- Miguel, N.; Sarasa, J.; López, A.; Gómez, J.; Mosteo, R.; Ormad, M.P. Study of Evolution of Microbiological Properties in Sewage Sludge-Amended Soils: A Pilot Experience. Int. J. Environ. Res. Public Health 2020, 17, 6696. [Google Scholar] [CrossRef]
- Straub, T.M.; Pepper, I.L.; Gerba, C.P. Hazards from Pathogenic Microorganisms in Land-Disposed Sewage Sludge. In Reviews of Environmental Contamination and Toxicology; Ware, G.W., Ed.; Springer: New York, NY, USA, 1993; Volume 132. [Google Scholar]
- Kelley, W.D.; Martens, D.C.; Reneau, R.B.; Simpson, T.W. Agricultural Use of Sewage Sludge: A Literature Review; Virginia Water Resources Research Center: Blacksburg, VA, USA, 1984. [Google Scholar]
- Vitenko, T.; Marynenko, N.; Kramar, I. Characteristics of sewage sludge composition for agricultural use. Econ. Environ. 2023, 85, 296–307. [Google Scholar] [CrossRef]
- IEA Bioenergy, Sustainable Biogas Production in Municipal Wastewater Treatment Plants. Available online: https://task37.ieabioenergy.com/wp-content/uploads/sites/32/2022/02/Wastewater_biogas_grey_web-1.pdf (accessed on 28 November 2024).
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Burton, F.L.; Stensel, H.D.; Metcalf & Eddy Inc. Wastewater Engineering: Treatment and Reuse, 5th ed.; McGraw-Hill: New York, NY, USA, 2014. [Google Scholar]
- Carrère, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenès, J.P.; Steyer, J.P.; Ferrer, I. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard. Mater. 2010, 183, 1–15. [Google Scholar] [CrossRef]
- Ward, A.J.; Hobbs, P.J.; Holliman, P.J.; Jones, D.L. Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 2008, 99, 7928–7940. [Google Scholar] [CrossRef]
- Zhang, W.; Wei, Y.; Liu, J.; Xie, H.; Wang, W.; Zhang, L. Methane production from fresh and aged dewatered sewage sludge: Effects of thermal hydrolysis and microbial community. Bioresour. Technol. 2017, 244, 840–849. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Dosta, J.; Macé, S.; Astals, S. Codigestion of solid wastes: A review of its uses and perspectives including modeling. Crit. Rev. Biotechnol. 2014, 34, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef]
- Venkatesh, G.; Elmi, R.A. Economic-Environmental Analysis of Handling Biogas from Sewage Sludge Digesters in WWTPs for Energy Recovery: Case Study of Bekkelaget WWTP in Oslo (Norway). Energy 2013, 58, 220–235. [Google Scholar] [CrossRef]
- Renewable Natural Gas Production. Available online: https://afdc.energy.gov/fuels/natural-gas-renewable (accessed on 28 November 2024).
- International Energy Agency. Outlook for Biogas and Biomethane, Prospects for Organic Growth. Available online: https://iea.blob.core.windows.net/assets/03aeb10c-c38c-4d10-bcec-de92e9ab815f/Outlook_for_biogas_and_biomethane.pdf (accessed on 28 November 2024).
- Use of Biomethane in the Fleet of Heavy Vehicles. Available online: https://www.canalbioenergia.com.br/uso-de-biometano-em-frota-de-veiculos/ (accessed on 28 November 2024).
- Ryckebosch, E.; Drouillon, M.; Vervaeren, H. Techniques for transformation of biogas to biomethane. Biomass Bioenergy 2011, 35, 1633–1645. [Google Scholar] [CrossRef]
- Petersson, A.; Wellinger, A. Biogas upgrading technologies–developments and innovations. IEA Bioenergy 2009, 20, 1–19. [Google Scholar]
- Muñoz, R.; Meier, L.; Diaz, I.; Jeison, D. A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev. Environ. Sci. Biotechnol. 2015, 14, 727–759. [Google Scholar] [CrossRef]
- Kapdi, S.S.; Vijay, V.K.; Rajesh, S.K.; Prasad, R. Biogas scrubbing, compression and storage: Perspective and prospectus in Indian context. Renew. Energy 2005, 30, 1195–1202. [Google Scholar] [CrossRef]
- Sun, Q.; Li, H.; Yan, J.; Liu, L.; Yu, Z.; Yu, X. Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilization. In Renewable and Sustainable Energy Reviews; Elsevier: Amsterdam, The Netherlands, 2015; Volume 51, pp. 521–532. [Google Scholar] [CrossRef]
- Ün, Ç. A Sustainable Approach to the Conversion of Waste into Energy: Landfill Gas-to-Fuel Technology. Sustainability 2023, 15, 14782. [Google Scholar] [CrossRef]
- Bordelanne, O.; Montero, M.; Bravin, F.; Prieur-Vernat, A.; Oliveti-Selmi, O.; Pierre, H.; Papadopoulo, M.; Muller, T. Biomethane CNG Hybrid: A Reduction by More Than 80% of the Greenhouse Gases Emissions Compared to Gasoline. J. Nat. Gas Sci. Eng. 2011, 3, 617–624. [Google Scholar] [CrossRef]
- Jensen, J. Biomethane for Transportation-Opportunities for Washington State, Western Washington Clean Cities Coalition. Available online: https://www.westcoastcollaborative.org/files/reports/biomethane_transportation_opportunities_wa.pdf (accessed on 28 November 2024).
- Åhman, M. Biomethane in the Transport Sector: An Appraisal of the Forgotten Option. Energy Policy 2010, 38, 208–217. [Google Scholar] [CrossRef]
- U.S. and Canadian Natural Gas Vehicle Market Analysis: Compressed Natural Gas Infrastructure—Final Report, TIAX. Available online: https://www.ourenergypolicy.org/wp-content/uploads/2012/05/11_1803_anga_module5_cng_dd10.pdf (accessed on 28 November 2024).
- Chandra, R.; Vijay, V.K.; Subbarao, P.M.V.; Khura, T.K. Performance Evaluation of a Constant Speed IC Engine on CNG, Methane Enriched Biogas, and Biogas. Appl. Energy 2011, 88, 3969–3977. [Google Scholar] [CrossRef]
- Subramanian, K.A.; Mathad, V.C.; Vijay, V.K.; Subbarao, P.M.V. Comparative Evaluation of Emission and Fuel Economy of an Automotive Spark Ignition Vehicle Fuelled with Methane Enriched Biogas and CNG Using Chassis Dynamometer. Appl. Energy 2013, 105, 17–29. [Google Scholar] [CrossRef]
- Yang, L.; Ge, X.; Wan, C.; Yu, F.; Li, Y. Progress and perspectives in converting biogas to transportation fuels. Renew. Sustain. Energy Rev. 2014, 40, 1133–1152. [Google Scholar] [CrossRef]
- Bidart, C.; Fröhling, M.; Schultmann, F. Electricity and Substitute Natural Gas Generation from the Conversion of Wastewater Treatment Plant Sludge. Appl. Energy 2014, 113, 404–413. [Google Scholar] [CrossRef]
- Olsson, L.; Fallde, M. Waste(d) Potential: A Socio-Technical Analysis of Biogas Production and Use in Sweden. J. Clean. Prod. 2015, 98, 107–115. [Google Scholar] [CrossRef]
- BioCNG. CNG Fuel Emissions Reductions. Available online: https://www.biocng.us/cng-fuel/emissions-reductions/ (accessed on 28 November 2024).
- Bachmann, N. Vorteile und Grenzen der Vergärung von leicht abbaubaren Industrie- und Lebensmittelabfällen in Abwasserreinigungsanlagen. Available online: https://www.aramis.admin.ch/Default?DocumentID=62354&Load=true (accessed on 28 November 2024).
- Kind, E.; Levy, G.A. Energieeffizienz und Energieproduktion auf ARA; Holinger Ag: Baden, Switzerland, 2012. [Google Scholar]
- Hansen, J.; Kolisch, G.; Hobus, I.; Osthoff, T. Steigerung der Energieeffizienz auf kommunalen Kläranlagen, eine Ergebnisbetrachtung zu durchgeführten Energieanalysen. Korresp. Abwasser Abfall 2010, 57, 1028–1032. [Google Scholar]
- Energie in ARA: Leitfaden zur Energieoptimierung auf Abwasserreinigungsanlagen. Available online: https://vsa.ch/Mediathek/energie-in-ara/ (accessed on 28 November 2024).
- International Energy Agency (IEA). Transport sector CO2 emissions. IEA Glob. Energy Review 2021. Available online: https://www.iea.org/reports/global-energy-review-2021 (accessed on 18 February 2025).
- Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Aemetis Biogas and APG Demonstrate Low-Cost Conversion of Diesel Trucks to Utilize up to 65% Renewable Natural Gas. Available online: https://www.aemetis.com/aemetis-biogas-and-apg-demonstrate-low-cost-conversion-of-diesel-trucks-to-utilize-up-to-65-renewable-natural-gas/ (accessed on 18 February 2025).
- ASKI. Adana Metropolitan Municipality—Adana Water and Sewerage Administration Activity Report; ASKI: Adana, Turkey, 2022. [Google Scholar]
- Menegheti, G.; Pereira, R.B.; Piekarski, C.M.; de Francisco, A.C.; Sydney, E.B.; Bittencourt, J.V.M. Utilization of Biogas from Solid Waste in the Production of Biomethane and Its Use as Biofuel in the Transport Sector; Baskar, C., Ramakrishna, S., Baskar, S., Sharma, R., Chinnappan, A., Sehrawat, R., Eds.; Handbook of Solid Waste Management; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Sustainable Energy and Climate Action Plan (SECAP) of Adana City, Republic of Türkiye, Ministry of Environment, Urbanization and Climate Change & Adana Metropolitan Municipality & World Bank & Sustainable Cities & ILBANK & EU & ARUP Publications. Available online: https://www.adana.bel.tr/panel/uploads/eplani_v/files/adana-buyuksehir-belediyesi-surdurulebilir-enerji-ve-iklim-eylem-plani-2024-2025.pdf (accessed on 18 February 2025).
- Ün, Ç. Investigation and mitigation studies of transportation-based greenhouse gas emissions in Adana city. In Sustainability of Natural Resources’ Efficiency; Guldal, S., Ed.; Iksad Publications: Ankara, Turkey, 2022; pp. 105–128. ISBN 978-625-8213-08-9. Available online: https://scholar.google.com.tr/citations?view_op=view_citation&hl=tr&user=oqjmYCoAAAAJ&citation_for_view=oqjmYCoAAAAJ:q3oQSFYPqjQC (accessed on 18 February 2025).
- Ün, Ç. Investigation of Alternative Vehicle Applications for Reducing Greenhouse Gas Emissions in Urban Public Transport: The Case of Adana Province. Eur. Mech. Sci. 2023, 7, 220–229. [Google Scholar] [CrossRef]
- Souza, S.N.; Santos, R.F.; Fracaro, G.P.M. Potential for the Production of Biogas in Alcohol and Sugar Cane Plants for Use in Urban Buses in Brazil. In Proceedings of the World Renewable Energy Congress, Linköping, Sweden, 8–13 May 2011. [Google Scholar]
- Biogas Buses ‘Better Value’ than Electric. Available online: https://www.europeanbiogas.eu/biogas-buses-better-value-electric/ (accessed on 18 February 2024).
- Report on Diesel- and Alternative-Fuel Bus Trials. Available online: https://assets.gov.ie/69312/eadd09d7dd5a49f698dbb4a77db4c78c.pdf (accessed on 18 February 2025).
- Introducing Biogas and Particulate Filters for Buses. Available online: https://civitas.eu/mobility-solutions/introducing-biogas-and-particulate-filters-for-buses (accessed on 18 February 2025).
- Case Study: Bio-Bus A Step Change in Sustainable Transport. Available online: https://www.geneco.uk.com/case-studies/bio-bus/ (accessed on 18 February 2025).
Year | Amount (m3) | Months | 2019 | 2020 | 2021 |
---|---|---|---|---|---|
2004 | 50,172,600 | 01 | 10,226,458 | 8,982,010 | 8,675,188 |
2005 | 87,648,545 | 02 | 9,183,050 | 9,137,127 | 7,243,934 |
2006 | 65,036,065 | 03 | 10,122,919 | 9,432,674 | 8,432,328 |
2007 | 82,162,455 | 04 | 9,675,709 | 9,399,610 | 8,486,611 |
2008 | 102,900,070 | 05 | 9,597,533 | 9,260,198 | 8,831,014 |
2009 | 98,465,320 | 06 | 9,480,991 | 8,899,359 | 8,473,240 |
2010 | 93,042,880 | 07 | 9,520,864 | 8,661,078 | 8,829,949 |
2011 | 101,488,747 | 08 | 9,485,043 | 8,683,666 | 8,776,052 |
2012 | 102,938,927 | 09 | 8,746,163 | 8,324,457 | 8,584,115 |
2013 | 99,953,189 | 10 | 9,496,166 | 8,373,781 | 8,820,138 |
2014 | 103,302,263 | 11 | 9,259,563 | 8,241,465 | 8,573,157 |
2015 | 105,342,383 | 12 | 8,423,989 | 8,586,843 | 8,670,575 |
2016 | 119,110,703 | Total | 113,218,448 | 105,982,268 | 102,396,301 |
2017 | 121,592,751 | ||||
2018 | 112,574,436 | ||||
2019 | 113,218,448 | ||||
2020 | 105,982,268 | ||||
2021 | 102,396,301 |
Biogas and Electricity Production by Year | ||
---|---|---|
Year | Biogas (Nm3/Year) | Electric (kW/Year) |
2004 | 2,263,540 | 2,511,000 |
2005 | 4,666,000 | 6,589,928 |
2006 | 3,674,000 | 5,831,200 |
2007 | 4,029,400 | 7,279,000 |
2008 | 3,894,500 | 9,311,000 |
2009 | 3,613,800 | 7,123,000 |
2010 | 3,276,000 | 2,432,000 |
2011 | 3,871,762 | 6,394,581 |
2012 | 4,808,418 | 8,719,442 |
2013 | 5,966,812 | 10,564,083 |
2014 | 6,527,843 | 13,386,686 |
2015 | 6,561,361 | 15,670,980 |
2016 | 7,428,611 | 16,578,381 |
2017 | 6,192,786 | 15,029,266 |
2018 | 5,356,235 | 13,301,650 |
2019 | 4,666,295 | 9,364,351 |
2020 | 4,597,516 | 8,829,350 |
2021 | 5,394,346 | 10,001,480 |
0–4 Year | 5–9 Year | 10–14 Year | 15–19 Year | 20–24 Year | 25+ Year | Total |
---|---|---|---|---|---|---|
85 | 93 | 78 | 19 | 64 | 0 | 339 |
Parameter | Result (%) | Comment |
---|---|---|
CH4 (Methane) | 65 | Main combustible component; high percentage suitable for energy production. |
CO2 (Carbon Dioxide) | 30 | Inert gas; reduces energy density; thus, must be minimized. |
O2 (Oxygen) | ~0.25 | Undesirable in biogas; presence indicates minor air infiltration. |
H2 (Hydrogen) | 0.00 | Absence suggests stable anaerobic conditions. |
N2 (Nitrogen) | 0.5 | Inert; usually has minimal impact but can dilute the fuel. |
CO (Carbon Monoxide) | ~0.00 | None detected, beneficial as CO can be toxic and is challenging to separate. |
H2S (Hydrogen Sulfide) | 5000–5500 ppm | High concentration; corrosive and hazardous. |
Net Calorific Value | 25 MJ/kg | Energy content; acceptable but could be improved with purification. |
Parameter | Diesel Buses (Per Bus) | Wastewater Biogas Buses (Per Bus) | Environmental Impact |
---|---|---|---|
CO2 Emissions (g of CO2 per liter) | 2700 [52] | 432 [54] | 84% reduction |
Energy Efficiency (MJ/km) | 14.3 | 23.5 [55] | - |
Particulate Matter (PM) Emissions (g/km) | 0.03 | 0.005 | 84.4% reduction [56] |
NOx Emissions (g/km) | 1.0 | 0.2 [57] | 80% reduction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Un, C. Assessing Biogas from Wastewater Treatment Plants for Sustainable Transportation Fuel: A Detailed Analysis of Energy Potential and Emission Reductions. Gases 2025, 5, 6. https://doi.org/10.3390/gases5010006
Un C. Assessing Biogas from Wastewater Treatment Plants for Sustainable Transportation Fuel: A Detailed Analysis of Energy Potential and Emission Reductions. Gases. 2025; 5(1):6. https://doi.org/10.3390/gases5010006
Chicago/Turabian StyleUn, Cagri. 2025. "Assessing Biogas from Wastewater Treatment Plants for Sustainable Transportation Fuel: A Detailed Analysis of Energy Potential and Emission Reductions" Gases 5, no. 1: 6. https://doi.org/10.3390/gases5010006
APA StyleUn, C. (2025). Assessing Biogas from Wastewater Treatment Plants for Sustainable Transportation Fuel: A Detailed Analysis of Energy Potential and Emission Reductions. Gases, 5(1), 6. https://doi.org/10.3390/gases5010006