Greenhouse Gas Emissions of the Poultry Sector in Greece and Mitigation Potential Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study
2.2. Population Data
2.3. GHG Emissions’ Estimation
2.4. Mitigation Scenarios Explored at the National Level
2.4.1. Scenario-I (S-I): Population Increase–Decrease
2.4.2. Scenario-II (S-II): Changes in Diet’s Feeds
2.4.3. Scenario-III (S-III): Improved Manure Management
2.5. Data Formatting and Analysis
3. Results
3.1. Overall GHG Emissions at the National Level and between Production Systems
3.2. Effect of Mitigation Potential on GHG Emissions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights (ST/ESA/SER.A/423); United Nations: New York, NY, USA, 2019.
- Alexandratos, N.; Bruinsma, J. World agriculture towards 2030/2050: The 2012 revision. In ESA Working Paper 2012; No. 12–03; FAO: Rome, Italy, 2012. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; ISBN 978-92-5-107920-1. [Google Scholar]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Font-i-Furnols, M.; Guerrero, L. Consumer preference, behavior and perception about meat and meat products: An overview. Meat Sci. 2014, 98, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Boontiam, W.; Shin, Y.; Choi, H.L.; Kumari, P. Assessment of the Contribution of Poultry and Pig Production to Greenhouse Gas Emissions in South Korea Over the Last 10 Years (2005 through 2014). Asian Australas. J. Anim. Sci. 2016, 29, 1805–1811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.-Z.; Xue, B.; Tianhai, Y. Greenhouse gas emissions from pig and poultry production sectors in China from 1960 to 2010. J. Integr. Agric. 2017, 16, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, N.I.; Jorgensen, M.; Bahrndorff, S. Greenhouse Gas Emission from Danish Organic Egg Production Estimated via LCA Methodology; Knowledge Centre for Agriculture, Poultry: Aarhus, Denmark, 2013; Available online: https://sp.landbrugsinfo.dk/fjerkrae/klima-og-energi/sider/Klima_UK_okoaeg.pdf (accessed on 25 November 2022).
- Nielsen, N.I.; Jorgensen, M.; Bahrndorff, S. Greenhouse Gas Emission from the Danish Broiler Production Estimated via LCA Methodology; Knowledge Centre for Agriculture, Poultry: Aarhus, Denmark, 2011; Available online: https://lca-net.com/wp-content/uploads/110628_vfc_engelsk_vfl_layout_web.pdf (accessed on 25 November 2022).
- IPCC. Guidelines for National Greenhouse Gas Inventories: Agriculture, Forestry and Other Land Use; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2006; ISBN 4-88788-032-4. [Google Scholar]
- IPCC. Refinement to the 2006IPCC Guidelines for National Greenhouse Gas Inventories: Agriculture, Forestry and Other Land Use; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2019; ISBN 978-4-88788-232-4. [Google Scholar]
- FAO. Global Livestock Environmental Assessment Model—Interactive (GLEAM-i); Guidelines, Version 1.9; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar]
- Katajajuuri, J.M. Experiences and improvement possibilities—LCA Case Study of Broiler Chicken Production. In Proceedings of the 3rd International Conference on Life Cycle Management, Zurich, Switzerland, 27–29 August 2007. [Google Scholar]
- Leinonen, I.; Williams, A.G.; Wiseman, J.; Guy, J.; Kyriazakis, I. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: Egg production systems. Poult. Sci. 2012, 91, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.G.; Audsley, E.; Sandars, D.L. A lifecycle approach to reducing the environmental impacts of poultry production. In Proceedings of the 17th European Symposium on Poultry Nutrition, Edinburg, UK, 23–27 August 2009; pp. 70–76. [Google Scholar]
- EUROSTAT. Eurostat Trade Statistics. Available online: https://ec.europa.eu/eurostat/web/main/data/database (accessed on 1 November 2022).
- Hellenic Statistical Authority. Available online: https://www.statistics.gr/en/statistics/-/publication/SPK13/ (accessed on 10 November 2022).
- FAOSTAT. Food and Agricultural Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 10 November 2022).
- MacLeod, M.J.; Vellinga, T.; Opio, C.; Falcucci, A.; Tempio, G.; Henderson, B.; Makkar, H.; Mottet, A.; Robinson, T.; Steinfeld, H.; et al. Invited review: A position on the Global Livestock Environmental Assessment Model (GLEAM). Animal 2018, 12, 383–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amanuel, B.; Solomon, A.B.; Mulubrhan, B. Estimation of greenhouse gas emissions from three livestock production systems in Ethiopia. Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 669–685. [Google Scholar]
- Leroy, F.; De Smet, S. Meat in the human diet: A biosocial perspective. In More than Beef, Pork and Chicken—The Production, Processing, and Quality Traits of Other Sources of Meat for Human Diet; Lorenzo, M., Munekata, P.E.S., Barba, F.J., Toldrá, F., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 1–19. [Google Scholar]
- Tan, S.M.; de Kock, H.L.; Dykes, G.A.; Coorey, R.; Buys, E.M. Enhancement of poultry meat: Trends, nutritional profile, legislation and challenges. South Afr. J. Anim. Sci. 2018, 48, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Latvala, T.; Niva, M.; Mäkelä, J.; Pouta, E.; Heikkilä, J.; Kotro, J.; Forsman-Hugg, S. Diversifying meat consumption patterns: Consumers’ self-reported past behaviour and intentions for change. Meat Sci. 2012, 92, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Meseret, S. A review of poultry welfare in conventional production system. Livest. Res. Rural. Dev. 2016, 28, 234. Available online: http://www.lrrd.org/lrrd28/12/mese28234.html (accessed on 10 December 2022).
- Mallick, P.; Muduli, K.; Biswal, J.N.; Pumwa, J. Broiler Poultry Feed Cost Optimization Using Linear Programming Technique. J. Oper. Strateg. Plan. 2020, 3, 31–57. [Google Scholar] [CrossRef]
- Da Silva, R.F.B.; Viña, A.; Moran, E.F.; Dou, Y.; Batistella, M.; Liu, J. Socioeconomic and environmental effects of soybean production in meta coupled systems. Sci. Rep. 2021, 11, 18662. [Google Scholar] [CrossRef] [PubMed]
- Putman, B.; Thoma, G.; Burek, J.; Matlock, M. A retrospective analysis of the United States poultry industry: 1965 compared with 2010. Agric. Syst. 2017, 157, 107–117. [Google Scholar] [CrossRef]
Years | Industrialized | Backyard | Total | Difference (%) | |
---|---|---|---|---|---|
Broilers | Layers | ||||
1961–1970 | 10.7 × 109 | 9.8 × 109 | 0.17 × 109 | 20.6 × 109 | ---- |
1971–1980 | 15.3 × 109 | 13.9 × 109 | 0.24 × 109 | 29.5 × 109 | +43.2 |
1981–1990 | 15.2 × 109 | 13.8 × 109 | 0.24 × 109 | 29.2 × 109 | −1.0 |
1991–2000 | 14.8 × 109 | 13.4 × 109 | 0.23 × 109 | 28.4 × 109 | −2.7 |
2001–2010 | 15.8 × 109 | 14.4 × 109 | 0.25 × 109 | 30.5 × 109 | +7.4 |
2011–2020 | 17.9 × 109 | 16.3 × 109 | 0.28 × 109 | 34.5 × 109 | +13.1 |
Scenario-I | Layers | Broilers | Backyards | Total | Difference (%) |
---|---|---|---|---|---|
Baseline (decade: 2011–2020) | 19.22 | 21.12 | 0.35 | 40.69 | --- |
S-Ia (mortality improvement) | 19.67 | 21.25 | 0.35 | 41.27 | +1.4 |
S-Ib (self-efficiency improvement) | 20.93 | 27.42 | 0.35 | 48.70 | +19.7 |
S-Ic (decline of industrial population, increase in backyard) | 17.29 | 19.01 | 0.38 | 36.68 | −9.8 |
Scenario-III | Layers | Broilers | Backyards | Difference (%) |
---|---|---|---|---|
Baseline (decade: 2011–2020) | 19.22 | 21.12 | 0.35 | - |
S-III_La 1 (dry-lot) | 16.54 | N/A | N/A | −13.9 |
S-III_Lb 1 (pit-storage, dry-lot, solid storage) | 18.99 | N/A | N/A | −1.2 |
S-III_Br_aa 2 (solid storage) | N/A | 23.48 | N/A | +11.2 |
S-III_Br_b 2 (solid storage, manure with litter) | N/A | 21.29 | N/A | +0.8 |
S-III_Bk_a 3 (daily spread) | N/A | N/A | 0.20 | −42.9 |
S-III_Bk_b 3 (daily spread, pasture spread, solid storage) | N/A | N/A | 0.30 | −14.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akamati, K.; Laliotis, G.P.; Bizelis, I. Greenhouse Gas Emissions of the Poultry Sector in Greece and Mitigation Potential Strategies. Gases 2023, 3, 47-56. https://doi.org/10.3390/gases3010003
Akamati K, Laliotis GP, Bizelis I. Greenhouse Gas Emissions of the Poultry Sector in Greece and Mitigation Potential Strategies. Gases. 2023; 3(1):47-56. https://doi.org/10.3390/gases3010003
Chicago/Turabian StyleAkamati, Konstantina, George P. Laliotis, and Iosif Bizelis. 2023. "Greenhouse Gas Emissions of the Poultry Sector in Greece and Mitigation Potential Strategies" Gases 3, no. 1: 47-56. https://doi.org/10.3390/gases3010003
APA StyleAkamati, K., Laliotis, G. P., & Bizelis, I. (2023). Greenhouse Gas Emissions of the Poultry Sector in Greece and Mitigation Potential Strategies. Gases, 3(1), 47-56. https://doi.org/10.3390/gases3010003