Crosstalk Between the Spleen and Other Organs/Systems: Downstream Signaling Events
Abstract
1. Introduction
2. Spleen Axes
2.1. Gut–Spleen Axis
2.2. Liver–Spleen Axis
2.3. Gut–Spleen–Skin Axis: What Does Psoriasis Have to Do with This Connection?
2.4. Relationship Between Psoriasis and Psoriasis-Associated Illnesses: Is There Any Role of the Spleen?
2.5. Central/Peripheral Nervous System–Spleen Axis: The Intricate Network
2.6. Heart–Kidney–Spleen Axis: The Involvement in a Life-Treatining Disease
3. Discussion
4. Future Directions
5. Captivating Trends
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Luu, S.; Spelman, D.; Woolley, I.J. Post-splenectomy sepsis: Preventative strategies, challenges, and solutions. Infect. Drug Resist. 2019, 12, 2839–2851. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Swirski, F.K.; Nahrendorf, M.; Etzrodt, M.; Wildgruber, M.; Cortez-Retamozo, V.; Panizzi, P.; Figueiredo, J.L.; Kohler, R.H.; Chudnovskiy, A.; Waterman, P.; et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009, 325, 612–616. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tarantino, G.; Savastano, S.; Capone, D.; Colao, A. The spleen: A new role for an old player? World J. Gastroenterol. 2011, 17, 3776–3784. [Google Scholar] [CrossRef] [PubMed]
- de Porto, A.P.; Lammers, A.J.; Bennink, R.J.; ten Berge, I.J.; Speelman, P.; Hoekstra, J.B. Assessment of splenic function. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Splenomegaly. Available online: https://www.ncbi.nlm.nih.gov/books/NBK430907/#:~:text=In%20addition%20to%20diagnosing%20splenomegaly,abdominal%20lymphadenopathy%2C%20or%20liver%20abnormalities (accessed on 1 May 2023).
- Rosado, M.M.; Aranburu, A.; Scarsella, M.; Cascioli, S.; Giorda, E.; Del Chierico, F.; Mortera, S.L.; Mortari, E.P.; Petrini, S.; Putignani, L.; et al. The spleen development is modulated by neonatal gut microbiota. Immunol. Lett. 2018, 199, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Carsetti, R.; Di Sabatino, A.; Rosado, M.M.; Cascioli, S.; Piano Mortari, E.; Milito, C.; Grimsholm, O.; Aranburu, A.; Giorda, E.; Tinozzi, F.P.; et al. Lack of Gut Secretory Immunoglobulin A in Memory B-Cell Dysfunction-Associated Disorders: A Possible Gut-spleen Axis. Front. Immunol. 2020, 10, 2937. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fang, H.; Feng, X.; Xu, T.; Zhong, R.; Lu, D.; Zhang, H.; Shen, W.; Zhao, Y.; Chen, L.; Wang, J. Gut-spleen Axis: Microbiota via Vascular and Immune Pathways Improve Busulfan-Induced The spleen Disruption. mSphere 2023, 8, e0058122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ekmekciu, I.; von Klitzing, E.; Fiebiger, U.; Escher, U.; Neumann, C.; Bacher, P.; Scheffold, A.; Kühl, A.A.; Bereswill, S.; Heimesaat, M.M. Immune Responses to Broad-Spectrum Antibiotic Treatment and Fecal Microbiota Transplantation in Mice. Front. Immunol. 2017, 8, 397. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wei, Y.; Chang, L.; Ishima, T.; Wan, X.; Ma, L.; Wuyun, G.; Pu, Y.; Hashimoto, K. Abnormalities of the composition of the gut microbiota and short-chain fatty acids in mice after splenectomy. Brain Behav. Immun. Health 2021, 11, 100198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liang, L.; Liu, L.; Zhou, W.; Yang, C.; Mai, G.; Li, H.; Chen, Y. Gut microbiota-derived butyrate regulates gut mucus barrier repair by activating the macrophage/WNT/ERK signaling pathway. Clin. Sci. 2022, 136, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Bachem, A.; Makhlouf, C.; Binger, K.J.; de Souza, D.P.; Tull, D.; Hochheiser, K.; Whitney, P.G.; Fernandez-Ruiz, D.; Dähling, S.; Kastenmüller, W.; et al. Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8+ T Cells. Immunity 2019, 51, 285–297.e5. [Google Scholar] [CrossRef] [PubMed]
- Sorbara, M.T.; Pamer, E.G. Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunol. 2019, 12, 1–9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hagström, H.; Vessby, J.; Ekstedt, M.; Shang, Y. 99% of patients with NAFLD meet MASLD criteria and natural history is therefore identical. J. Hepatol. 2024, 80, e76–e77. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.A.; Hennet, T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol. Life Sci. 2017, 74, 2959–2977. [Google Scholar] [CrossRef] [PubMed]
- Forlano, R.; Mullish, B.H.; Roberts, L.A.; Thursz, M.R.; Manousou, P. The Intestinal Barrier and Its Dysfunction in Patients with Metabolic Diseases and Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2022, 23, 662. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tarantino, G.; Citro, V. Could Adverse Effects of Antibiotics Due to Their Use/Misuse Be Linked to Some Mechanisms Related to Nonalcoholic Fatty Liver Disease? Int. J. Mol. Sci. 2024, 25, 1993. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nie, Q.; Luo, X.; Wang, K.; Ding, Y.; Jia, S.; Zhao, Q.; Li, M.; Zhang, J.; Zhuo, Y.; Lin, J.; et al. Gut symbionts alleviate MASH through a secondary bile acid biosynthetic pathway. Cell 2024, 187, 2717–2734. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wan, D.; Zhu, M.; Wang, G.; Zhang, X.; Huang, N.; Zhang, J.; Zhang, C.; Shang, Q.; Zhang, C.; et al. CD11b + CD43 hi Ly6C lo splenocyte-derived macrophages exacerbate liver fibrosis via the spleen-liver axis. Hepatology 2023, 77, 1612–1629. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, L.; Duan, M.; Chen, W.; Jiang, A.; Li, X.; Yang, J.; Li, Z. The spleen in liver cirrhosis: Revisiting an old enemy with novel targets. J. Transl. Med. 2017, 15, 111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giuffrè, M.; Bedogni, G.; Abazia, C.; Masutti, F.; Tiribelli, C.; Crocè, L.S. The spleen stiffness can be employed to assess the efficacy of spontaneous portosystemic shunts in relieving portal hypertension. Ann. Hepatol. 2020, 19, 691–693. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, G.; Citro, V.; Conca, P.; Riccio, A.; Tarantino, M.; Capone, D.; Cirillo, M.; Lobello, R.; Iaccarino, V. What are the implications of the spontaneous spleno-renal shunts in liver cirrhosis? BMC Gastroenterol. 2009, 9, 89. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Däbritz, J.; Worch, J.; Materna, U.; Koch, B.; Koehler, G.; Duck, C.; Frühwald, M.C.; Foell, D. Life-threatening hypersplenism due to idiopathic portal hypertension in early childhood: Case report and review of the literature. BMC Gastroenterol. 2010, 10, 122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hirooka, M.; Koizumi, Y.; Tanaka, T.; Nakamura, Y.; Sunago, K.; Yukimoto, A.; Watanabe, T.; Yoshida, O.; Miyake, T.; Tokumoto, Y.; et al. Treatment on the spleen Prevents the Progression of Secondary Sarcopenia in Patients With Liver Cirrhosis. Hepatol. Commun. 2020, 4, 1812–1823. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Praktiknjo, M.; Clees, C.; Pigliacelli, A.; Fischer, S.; Jansen, C.; Lehmann, J.; Pohlmann, A.; Lattanzi, B.; Krabbe, V.K.; Strassburg, C.P.; et al. Sarcopenia Is Associated With Development of Acute-on-Chronic Liver Failure in Decompensated Liver Cirrhosis Receiving Transjugular Intrahepatic Portosystemic Shunt. Clin. Transl. Gastroenterol. 2019, 10, e00025. [Google Scholar] [CrossRef] [PubMed]
- Hung, S.K.; Kou, H.W.; Hsu, K.H.; Wu, C.T.; Lee, C.W.; Leonard Goh, Z.N.; Seak, C.K.; Chen-Yeen Seak, J.; Liu, Y.T.; Seak, C.J.; et al. Sarcopenia is a useful risk stratification tool to prognosticate splenic abscess patients in the emergency department. J. Formos. Med. Assoc. 2021, 120, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Penas, F.N.; Cevey, Á.C.; Siffo, S.; Mirkin, G.A.; Goren, N.B. Hepatic injury associated with Trypanosoma cruzi infection is attenuated by treatment with 15-deoxy-Δ12,14 prostaglandin J2. Exp. Parasitol. 2016, 170, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Deleeuw, V.; Phạm, H.T.T.; De Poorter, I.; Janssens, I.; De Trez, C.; Radwanska, M.; Magez, S. Trypanosoma brucei brucei causes a rapid and persistent influx of neutrophils in the spleen of infected mice. Parasite Immunol. 2019, 41, e12664. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, C.B.; Wang, Y.; Yao, Y.; Wang, J.J.; Tsuneyama, K.; Yang, Q.; Liu, B.; Selmi, C.; Gershwin, M.E.; Yang, S.H.; et al. The gut microbiome contributes to splenomegaly and tissue inflammation in a murine model of primary biliary cholangitis. Ann. Transl. Med. 2022, 10, 507. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cococcia, S.; Lenti, M.V.; Santacroce, G.; Achilli, G.; Borrelli de Andreis, F.; Di Sabatino, A. Liver-spleen axis dysfunction in COVID-19. World J. Gastroenterol. 2021, 27, 5919–5931. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsushima, Y.; Endo, K. The spleen enlargement in patients with nonalcoholic fatty liver: Correlation between degree of fatty infiltration in liver and size of the spleen. Dig. Dis. Sci. 2000, 45, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, G.; Conca, P.; Pasanisi, F.; Ariello, M.; Mastrolia, M.; Arena, A.; Tarantino, M.; Scopacasa, F.; Vecchione, R. Could inflammatory markers help diagnose nonalcoholic steatohepatitis? Eur. J. Gastroenterol. Hepatol. 2009, 21, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Altunkaynak, B.Z.; Ozbek, E.; Altunkaynak, M.E. A stereological and histological analysis of the spleen on obese female rats, fed with high fat diet. Saudi Med. J. 2007, 28, 353–357. [Google Scholar] [PubMed]
- Tarantino, G.; Marra, M.; Contaldo, F.; Pasanisi, F. Basal metabolic rate in morbidly obese patients with non-alcoholic fatty liver disease. Clin. Investig. Med. 2008, 31, E24–E29. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Yamanouchi, K.; Soeta, C.; Katakai, Y.; Harada, R.; Naito, K.; Tojo, H. Skeletal muscle injury induces hepatocyte growth factor expression in the spleen. Biochem. Biophys. Res. Commun. 2002, 292, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, G.; Citro, V.; Conforti, P.; Balsano, C.; Capone, D. Is There a Link between Basal Metabolic Rate, The spleen Volume and Hepatic Growth Factor Levels in Patients with Obesity-Related NAFLD? J. Clin. Med. 2019, 8, 1510. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Helgesson, S.; Tarai, S.; Langner, T.; Ahlström, H.; Johansson, L.; Kullberg, J.; Lundström, E. The association of the spleen volume with sex, age, type 2-diabetes and nonalcoholic fatty liver disease -initial results from more than 35,000 UK Biobank participants. In Proceedings of the EASL ILC 2022, London, UK, 25 June 2022. [Google Scholar]
- Zardi, E.M.; De Sio, I.; Ghittoni, G.; Sadun, B.; Palmentieri, B.; Roselli, P.; Persico, M.; Caturelli, E. Which clinical and sonographic parameters may be useful to discriminate NASH from steatosis? J. Clin. Gastroenterol. 2011, 45, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Cacciottolo, T.M.; Kumar, A.; Godfrey, E.M.; Davies, S.E.; Allison, M. The spleen Size Does Not Correlate With Histological Stage of Liver Disease in People With Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2023, 21, 535–537.e1. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, G.; Scalera, A.; Finelli, C. Liver-spleen axis: Intersection between immunity, infections and metabolism. World J. Gastroenterol. 2013, 19, 3534–3542. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scutarașu, E.C.; Trincă, L.C. Heavy Metals in Foods and Beverages: Global Situation, Health Risks and Reduction Methods. Foods 2023, 12, 3340. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.ncbi.nlm.nih.gov/books/NBK548090/#:~:text=Chronic%20oral%20exposure%20to%20excessive,transport%20and%20excretion%20of%20copper.&ved=2ahUKEwjn17jsoeeFAxXugP0HHYEpDL0QFnoECA4QAw&usg=AOvVaw3s4qE2qAmEtuYF7Kot-4wD (accessed on 1 May 2023).
- Guo, H.; Wang, Y.; Cui, H.; Ouyang, Y.; Yang, T.; Liu, C.; Liu, X.; Zhu, Y.; Deng, H. Copper Induces The spleen Damage Through Modulation of Oxidative Stress, Apoptosis, DNA Damage, and Inflammation. Biol. Trace Elem. Res. 2022, 200, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Keswani, T.; Dey, M.; Bhattacharya, S.; Sarkar, S.; Goswami, S.; Ghosh, N.; Dutta, A.; Bhattacharyya, A. Copper-induced immunotoxicity involves cell cycle arrest and cell death in the spleen and thymus. Toxicology 2012, 293, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, C.; Li, G.; Wang, W.; Tang, S. Comparison of copper concentration between non-alcoholic fatty liver disease patients and normal individuals: A meta-analysis. Front. Public. Health 2023, 11, 1095916. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wapnir, R.A.; Devas, G. Copper deficiency: Interaction with high-fructose and high-fat diets in rats. Am. J. Clin. Nutr. 1995, 61, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Aigner, E.; Theurl, I.; Haufe, H.; Seifert, M.; Hohla, F.; Scharinger, L.; Stickel, F.; Mourlane, F.; Weiss, G.; Datz, C. Copper availability contributes to iron perturbations in human nonalcoholic fatty liver disease. Gastroenterology 2008, 135, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.R.; Shah, Y.M. Iron homeostasis in the liver. Compr. Physiol. 2013, 3, 315–330. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ezhilarasan, D.; Lakshmi, T. A Molecular Insight into the Role of Antioxidants in Nonalcoholic Fatty Liver Diseases. Oxid. Med. Cell Longev. 2022, 2022, 9233650. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tarantino, G.; Porcu, C.; Arciello, M.; Andreozzi, P.; Balsano, C. Prediction of carotid intima-media thickness in obese patients with low prevalence of comorbidities by serum copper bioavailability. J. Gastroenterol. Hepatol. 2018, 33, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Thye, A.Y.; Bah, Y.R.; Law, J.W.; Tan, L.T.; He, Y.W.; Wong, S.H.; Thurairajasingam, S.; Chan, K.G.; Lee, L.H.; Letchumanan, V. Gut-Skin Axis: Unravelling the Connection between the Gut Microbiome and Psoriasis. Biomedicines 2022, 10, 1037. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Di, T.; Wang, Y.; Zhao, J.; Guo, X.; Chen, Z.; Zhai, C.; Li, P. Study on the effect of the spleen deficiency on the pathogenesis of psoriasis based on intestinal microbiome. Longhua Chin. Med. 2019, 2, 14. [Google Scholar] [CrossRef]
- Man, A.M.; Orăsan, M.S.; Hoteiuc, O.A.; Olănescu-Vaida-Voevod, M.C.; Mocan, T. Inflammation and Psoriasis: A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 16095. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Swarup, G.; Dasgupta, J.D.; Garbers, D.L. Tyrosine protein kinase activity of rat the spleen and other tissues. J. Biol. Chem. 1983, 258, 10341–10347. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, K.S.; Nadeem, A.; Ahmad, S.F.; Al-Harbi, N.O.; Ibrahim, K.E.; El-Sherbeeny, A.M.; Alhoshani, A.R.; Alshammari, M.A.; Alotaibi, M.R.; Al-Harbi, M.M. Inhibition of the spleen tyrosine kinase attenuates psoriasis-like inflammation in mice through blockade of dendritic cell-Th17 inflammation axis. Biomed. Pharmacother. 2019, 111, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Shinno-Hashimoto, H.; Eguchi, A.; Sakamoto, A.; Wan, X.; Hashimoto, Y.; Fujita, Y.; Mori, C.; Hatano, M.; Matsue, H.; Hashimoto, K. Effects of splenectomy on skin inflammation and psoriasis-like phenotype of imiquimod-treated mice. Sci. Rep. 2022, 12, 14738. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Balato, N.; Napolitano, M.; Ayala, F.; Patruno, C.; Megna, M.; Tarantino, G. Nonalcoholic fatty liver disease, the spleen and psoriasis: New aspects of low-grade chronic inflammation. World J. Gastroenterol. 2015, 21, 6892–6897. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iida, S.; Nakanishi, T.; Momose, F.; Ichishi, M.; Mizutani, K.; Matsushima, Y.; Umaoka, A.; Kondo, M.; Habe, K.; Hirokawa, Y.; et al. IL-17A Is the Critical Cytokine for Liver and The spleen Amyloidosis in Inflammatory Skin Disease. Int. J. Mol. Sci. 2022, 23, 5726. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mosca, M.; Hong, J.; Hadeler, E.; Hakimi, M.; Liao, W.; Bhutani, T. The Role of IL-17 Cytokines in Psoriasis. Immunotargets Ther. 2021, 10, 409–418. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, X.; Chen, L. The risk of organ-based comorbidities in psoriasis: A systematic review and meta-analysis. An. Bras. Dermatol. 2022, 97, 612–623. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hjuler, K.F.; Gormsen, L.C.; Vendelbo, M.H.; Egeberg, A.; Nielsen, J.; Iversen, L. Systemic Inflammation and Evidence of a Cardio-splenic Axis in Patients with Psoriasis. Acta Derm. Venereol. 2018, 98, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Eppinga, H.; Sperna Weiland, C.J.; Thio, H.B.; van der Woude, C.J.; Nijsten, T.E.; Peppelenbosch, M.P.; Konstantinov, S.R. Similar Depletion of Protective Faecalibacterium prausnitzii in Psoriasis and Inflammatory Bowel Disease, but not in Hidradenitis Suppurativa. J. Crohns Colitis 2016, 10, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Khashper, A.; Shwartz, D.; Taragin, B.H.; Shalmon, T. Splenic size as a marker for active inflammation in Crohn’s disease. Clin. Imaging 2022, 84, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, K.; Onizawa, M.; Fujiwara, T.; Gunji, N.; Imamura, H.; Katakura, K.; Ohira, H. Evaluation of the relationship between the spleen volume and the disease activity in ulcerative colitis and Crohn disease. Medicine 2022, 101, e28515. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zamani, M.; Alizadeh-Tabari, S.; Singh, S.; Loomba, R. Meta-analysis: Prevalence of, and risk factors for, non-alcoholic fatty liver disease in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2022, 55, 894–907. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoffmann, P.; Jung, V.; Behnisch, R.; Gauss, A. Prevalence and risk factors of nonalcoholic fatty liver disease in patients with inflammatory bowel diseases: A cross-sectional and longitudinal analysis. World J. Gastroenterol. 2020, 26, 7367–7381. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ruan, Z.; Lu, T.; Chen, Y.; Yuan, M.; Yu, H.; Liu, R.; Xie, X. Association Between Psoriasis and Nonalcoholic Fatty Liver Disease Among Outpatient US Adults. JAMA Dermatol. 2022, 158, 745–753. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, S.; Dulai, P.S.; Zarrinpar, A.; Ramamoorthy, S.; Sandborn, W.J. Obesity in IBD: Epidemiology, pathogenesis, disease course and treatment outcomes. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 110–121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karjoo, S.; Auriemma, A.; Fraker, T.; Bays, H.E. Nonalcoholic fatty liver disease and obesity: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022. Obes. Pillars 2022, 3, 100027. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abd El-Aziz, R.; Naguib, M.; Rashed, L.A. The spleen size in patients with metabolic syndrome and its relation to metabolic and inflammatory parameters. Egypt. J. Intern. Med. 2018, 30, 78–82. [Google Scholar] [CrossRef]
- McGowan, C.E.; Jones, P.; Long, M.D.; Barritt, A.S., 4th. Changing shape of disease: Nonalcoholic fatty liver disease in Crohn’s disease-a case series and review of the literature. Inflamm. Bowel Dis. 2012, 18, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Jarmakiewicz-Czaja, S.; Sokal, A.; Pardak, P.; Filip, R. Glucocorticosteroids and the Risk of NAFLD in Inflammatory Bowel Disease. Can. J. Gastroenterol. Hepatol. 2022, 2022, 4344905. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scalera, A.; Di Minno, M.N.; Tarantino, G. What does irritable bowel syndrome share with non-alcoholic fatty liver disease? World J. Gastroenterol. 2013, 19, 5402–5420. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ng, J.J.J.; Loo, W.M.; Siah, K.T.H. Associations between irritable bowel syndrome and non-alcoholic fatty liver disease: A systematic review. World J. Hepatol. 2023, 15, 925–938. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Shen, J.; Cheng, W.; Roy, B.; Zhao, R.; Chai, T.; Sheng, Y.; Zhang, Z.; Chen, X.; Liang, W.; et al. Microbiota-mediated shaping of mouse the spleen structure and immune function characterized by scRNA-seq and Stereo-seq. J. Genet. Genom. 2023, 50, 688–701. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wang, T.; Liao, L.; Fan, X.; Chang, L.; Hashimoto, K. Brain-spleen axis in health and diseases: A review and future perspective. Brain Res. Bull. 2022, 182, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Kaur, S.; Knuth, C.M.; Jeschke, M.G. CNS-spleen Axis—A Close Interplay in Mediating Inflammatory Responses in Burn Patients and a Key to Novel Burn Therapeutics. Front. Immunol. 2021, 12, 720221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wan, X.; Eguchi, A.; Sakamoto, A.; Fujita, Y.; Yang, Y.; Qu, Y.; Hatano, M.; Mori, C.; Hashimoto, K. Impact of broad-spectrum antibiotics on the gut-microbiota-spleen-brain axis. Brain Behav. Immun. Health 2022, 27, 100573. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Oliveira, A.C.; Alves, M.; Pham, A.; Ebrahimi, E.; Patel, H.; Fu, C.; de Kloet, A.; Krause, G.E.; Bryant, A. Sympathetic The spleen Denervation Attenuate Pulmonary Hypertension by Decreasing Lung Infiltration of Hematopoietic Stem Cells And Neuroinflammation. Physiology 2003, 38, 5734786. [Google Scholar] [CrossRef]
- Friedman, S.E.; Andrus, B.W. Obesity and pulmonary hypertension: A review of pathophysiologic mechanisms. J. Obes. 2012, 2012, 505274. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Breton, J.; Galmiche, M.; Déchelotte, P. Dysbiotic Gut Bacteria in Obesity: An Overview of the Metabolic Mechanisms and Therapeutic Perspectives of Next-Generation Probiotics. Microorganisms 2022, 10, 452. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jenkins, M.M.; Bachus, H.; Botta, D.; Schultz, M.D.; Rosenberg, A.F.; León, B.; Ballesteros-Tato, A. Lung dendritic cells migrate to the spleen to prime long-lived TCF1hi memory CD8+ T cell precursors after influenza infection. Sci. Immunol. 2021, 6, eabg6895. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuchler, J.C.; Siqueira, B.S.; Ceglarek, V.M.; Chasko, F.V.; Moura, I.C.; Sczepanhak, B.F.; Vettorazzi, J.F.; Balbo, S.L.; Grassiolli, S. The Vagus Nerve and The spleen: Influence on White Adipose Mass and Histology of Obese and Non-obese Rats. Front. Physiol. 2021, 12, 672027. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Xie, B.; Chen, X.; Zhang, J.; Yuan, S. A key role of gut microbiota-vagus nerve/spleen axis in sleep deprivation-mediated aggravation of systemic inflammation after LPS administration. Life Sci. 2021, 265, 118736. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Tan, C.; Nie, X.; Li, B.; You, M.; Lan, Y.; Tang, L. Rise in Postprandial GLP-1 Levels After Roux-en-Y Gastric Bypass: Involvement of the Vagus Nerve-spleen Anti-inflammatory Axis in Type 2 Diabetic Rats. Obes. Surg. 2022, 32, 1077–1085. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; van der Veen, J.N.; Zhu, L.; Chaba, T.; Ordoñez, M.; Lingrell, S.; Koonen, D.P.; Dyck, J.R.; Gomez-Muñoz, A.; Vance, D.E.; et al. Vagus nerve contributes to the development of steatohepatitis and obesity in phosphatidylethanolamine N-methyltransferase deficient mice. J. Hepatol. 2015, 62, 913–920. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S. Neurobiological and Systemic Effects of Chronic Stress. Chronic Stress. 2017, 1. [Google Scholar] [CrossRef] [PubMed]
- Radley, J.; Morilak, D.; Viau, V.; Campeau, S. Chronic stress and brain plasticity: Mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders. Neurosci. Biobehav. Rev. 2015, 58, 79–91. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, W.; Li, Y.U.; Sun, J.; Li, L.; Li, J.W.; Zhang, C.; Huang, C.; Yang, J.; Kong, G.Y.; Li, Z.F. The spleen contributes to restraint stress induced changes in blood leukocytes distribution. Sci. Rep. 2017, 7, 6501. [Google Scholar] [CrossRef]
- Jiang, W.; Li, Y.; Wei, W.; Li, J.W.; Li, L.; Zhang, C.; Zhang, S.Q.; Kong, G.Y.; Li, Z.F. The spleen contributes to restraint stress induced hepatocellular carcinoma progression. Int. Immunopharmacol. 2020, 83, 106420. [Google Scholar] [CrossRef] [PubMed]
- Yu Li, Hailing Liu, Danwen Zhao, Danjie Zhang, The spleen contributes to chronic restraint stress-induced lung injury through splenic CD11b+ cells. Int. Immunopharmacol. 2024, 126, 111258, ISSN 1567-5769. [CrossRef]
- Scott, K.A.; Melhorn, S.J.; Sakai, R.R. Effects of Chronic Social Stress on Obesity. Curr. Obes. Rep. 2012, 1, 16–25. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fuchs, E.; Flügge, G. Cellular consequences of stress and depression. Dialogues Clin. Neurosci. 2004, 6, 171–183. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, L.; Zhang, J.; Fujita, Y.; Shinno-Hashimoto, H.; Shan, J.; Wan, X.; Qu, Y.; Chang, L.; Wang, X.; Hashimoto, K. Effects of the spleen nerve denervation on depression-like phenotype, systemic inflammation, and abnormal composition of gut microbiota in mice after administration of lipopolysaccharide: A role of brain-spleen axis. J. Affect. Disord. 2022, 317, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, S.D. The cardiosplenic axis is essential for the pathogenesis of ischemic heart failure. Trans. Am. Clin. Climatol. Assoc. 2018, 129, 202–214. [Google Scholar] [PubMed] [PubMed Central]
- Mentkowski, K.I.; Euscher, L.M.; Patel, A.; Alevriadou, B.R.; Lang, J.K. Monocyte recruitment and fate specification after myocardial infarction. Am. J. Physiol. Cell Physiol. 2020, 319, C797–C806. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van der Laan, A.M.; Ter Horst, E.N.; Delewi, R.; Begieneman, M.P.; Krijnen, P.A.; Hirsch, A.; Lavaei, M.; Nahrendorf, M.; Horrevoets, A.J.; Niessen, H.W.; et al. Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. Eur. Heart J. 2014, 35, 376–385. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, Z.; Ling, Y.; Xu, Q.; Cao, Y.; Tang, S.; Fu, C. Blocking the A2B adenosine receptor alleviates myocardial damage by inhibiting the spleen-derived MDSC mobilisation after acute myocardial infarction. Ann. Med. 2022, 54, 1616–1626. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, Z.; Qian, C.; Zhang, Z.; Nian, W.; Xu, Q.; Cao, Y.; Fu, C. Ticagrelor regulates the differentiation of MDSCs after acute myocardial infarction to reduce cardiac injury. Biomed. Pharmacother. 2024, 172, 116209. [Google Scholar] [CrossRef] [PubMed]
- Emami, H.; Singh, P.; MacNabb, M.; Vucic, E.; Lavender, Z.; Rudd, J.H.; Fayad, Z.A.; Lehrer-Graiwer, J.; Korsgren, M.; Figueroa, A.L.; et al. Splenic metabolic activity predicts risk of future cardiovascular events: Demonstration of a cardiosplenic axis in humans. JACC Cardiovasc. Imaging 2015, 8, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Hiraiwa, H.; Okumura, T.; Murohara, T. The cardiosplenic axis: The prognostic role of the spleen in heart failure. Heart Fail. Rev. 2022, 27, 2005–2015. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taniguchi, T.; Kidani, Y.; Kanakura, H.; Takemoto, Y.; Yamamoto, K. Effects of dexmedetomidine on mortality rate and inflammatory responses to endotoxin-induced shock in rats. Crit. Care Med. 2004, 32, 1322–1326. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Kang, K.; Liu, Y.S.; Li, N.N.; Han, Q.Y.; Liu, H.T.; Kong, W.L.; Zhang, X.; Huang, R.; Yang, Z.Y.; et al. Mechanisms of Renal-Splenic Axis Involvement in Acute Kidney Injury Mediated by the α7nAChR-NF-κB Signaling Pathway. Inflammation 2021, 44, 746–757. [Google Scholar] [CrossRef] [PubMed]
- Ungar, G. Endocrine function of the spleen and its participation in the pituitary adrenal response to stress. Endocrinology 1945, 37, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Savastano, S.; Di Somma, C.; Pizza, G.; De Rosa, A.; Nedi, V.; Rossi, A.; Orio, F.; Lombardi, G.; Colao, A.; Tarantino, G. Liver-spleen axis, insulin-like growth factor-(IGF)-I axis and fat mass in overweight/obese females. J. Transl. Med. 2011, 9, 136. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sasaki, K.; Ito, T. Effects of estrogen and progesterone on the spleen of the mouse: A light and electron microscopic study. Arch. Histol. Jpn. 1981, 44, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Baldridge, C.W.; Peterson, F.R. Splenic enlargement in hyperthyroidism. J. Am. Med. Assoc. 1927, 88, 1701–1702. [Google Scholar] [CrossRef]
- Oakley, O.R.; Frazer, M.L.; Ko, C. Pituitary-ovary-spleen axis in ovulation. Trends Endocrinol. Metab. 2011, 22, 345–352. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perla, D. Relation of the hypophysis to the spleen: I. Effect of hypophysectomy on growth and regeneration of spleen tissue, I.I. The presence of a spleen-stimulating factor in extracts of anterior hypophysis. J. Exp. Med. 1936, 63, 599–615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benten, W.P.; Bettenhaeuser, U.; Wunderlich, F.; Van Vliet, E.; Mossmann, H. Testosterone-induced abrogation of self-healing of Plasmodium chabaudi malaria in B10 mice: Mediation by spleen cells. Infect. Immun. 1991, 59, 4486–4490. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blake, C.A.; Nair-Menon, J.U.; Campbell, G.T. Estrogen can protect splenocytes from the toxic effects of the environmental pollutant 4-tert-octylphenol. Endocrine 1997, 6, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmson, A.S.; Lantero Rodriguez, M.; Stubelius, A.; Fogelstrand, P.; Johansson, I.; Buechler, M.B.; Lianoglou, S.; Kapoor, V.N.; Johansson, M.E.; Fagman, J.B.; et al. Testosterone is an endogenous regulator of BAFF and splenic B cell number. Nat. Commun. 2018, 9, 2067. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gear, R.B.; Belcher, S.M. Impacts of Bisphenol A and Ethinyl Estradiol on Male and Female CD-1 Mouse Spleen. Sci. Rep. 2017, 7, 856. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cárdenas, C.M.; Domínguez, I.; Campuzano, M.; Bezaury, P.; Iñiguez-Rodríguez, M.; Gamboa-Domínguez, A.; Uscanga, L.F. Malignant insulinoma arising from intrasplenic heterotopic pancreas. JOP 2009, 10, 321–323. [Google Scholar] [PubMed]
- Hossam Ebaid, H.E.; Al-Tamimi, J.; Ali Metwalli, A.M.; Ahmed Allam, A.A.; Kairy Zohir, K.Z.; Jamaan Ajarem, J.A.; Ahmed Rady, A.R.; Alhazza, I.M.; Ibrahim, K.E. Effect of STZ-Induced Diabetes on Spleen of Rats: Improvement by Camel Whey Proteins. Pak. J. Zool. 2015, 47, 905. [Google Scholar]
- Finocchiaro, L.M.; Arzt, E.S.; Fernández-Castelo, S.; Criscuolo, M.; Finkielman, S.; Nahmod, V.E. Serotonin and melatonin synthesis in peripheral blood mononuclear cells: Stimulation by interferon-gamma as part of an immunomodulatory pathway. J. Interferon Res. 1988, 8, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Oaknin-Bendahan, S.; Anis, Y.; Nir, I.; Zisapel, N. Effects of long-term administration of melatonin and a putative antagonist on the ageing rat. Neuroreport 1995, 6, 785–788. [Google Scholar] [CrossRef] [PubMed]
- Pertsov, S.S. Effect of melatonin on the thymus, adrenal glands, and the spleen in rats during acute stress. Bull. Exp. Biol. Med. 2006, 141, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Salagre, D.; Navarro-Alarcón, M.; Villalón-Mir, M.; Alcázar-Navarrete, B.; Gómez-Moreno, G.; Tamimi, F.; Agil, A. Chronic melatonin treatment improves obesity by inducing uncoupling of skeletal muscle SERCA-SLN mediated by CaMKII/AMPK/PGC1α pathway and mitochondrial biogenesis in female and male Zücker diabetic fatty rats. Biomed. Pharmacother. 2024, 172, 116314, Erratum in Biomed. Pharmacother. 2024, 173, 116411. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.N.; Fan, Z.; Lyu, A.K.; Wu, J.; Guo, A.; Yang, Y.F.; Chen, J.L.; Xiao, Q. Effect of sarcolipin-mediated cell transdifferentiation in sarcopenia-associated skeletal muscle fibrosis. Exp. Cell Res. 2020, 389, 111890. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, G.; Sinatti, G.; Citro, V.; Santini, S.J.; Balsano, C. Sarcopenia, a condition shared by various diseases: Can we alleviate or delay the progression? Intern. Emerg. Med. 2023, 18, 1887–1895. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, J.; Huang, X.; Dou, L.; Yan, M.; Shen, T.; Tang, W.; Li, J. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduct. Target. Ther. 2022, 7, 391. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bansal, S.; Friedrichs, W.E.; Velagapudi, C.; Feliers, D.; Khazim, K.; Horn, D.; Cornell, J.E.; Werner, S.L.; Fanti, P. The spleen contributes significantly to increased circulating levels of fibroblast growth factor 23 in response to lipopolysaccharide-induced inflammation. Nephrol. Dial. Transplant. 2017, 32, 960–968, Erratum in Nephrol. Dial. Transplant. 2017, 32, 583. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mark, K.A.; Dumas, K.J.; Bhaumik, D.; Schilling, B.; Davis, S.; Oron, T.R.; Sorensen, D.J.; Lucanic, M.; Brem, R.B.; Melov, S.; et al. Vitamin D Promotes Protein Homeostasis and Longevity via the Stress Response Pathway Genes skn-1, ire-1, and xbp-1. Cell Rep. 2016, 17, 1227–1237. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luo, H.; Zheng, Z.; Hu, H.; Sun, C. Serum klotho levels and mortality patterns in frail individuals: Unraveling the u-shaped association. Aging Clin. Exp. Res. 2024, 36, 92. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nakashima, Y.; Mima, T.; Yashiro, M.; Sonou, T.; Ohya, M.; Masumoto, A.; Yamanaka, S.; Koreeda, D.; Tatsuta, K.; Hanba, Y.; et al. Expression and localization of fibroblast growth factor (FGF)23 and Klotho in the spleen: Its physiological and functional implications. Growth Factors 2016, 34, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Wątroba, M.; Szukiewicz, D. The role of sirtuins in aging and age-related diseases. Adv. Med. Sci. 2016, 61, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Rostamzadeh, F.; Moosavi-Saeed, Y.; Yeganeh-Hajahmadi, M. Interaction of Klotho and sirtuins. Exp. Gerontol. 2023, 182, 112306, Frailty. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Xie, C.; Xiong, Y.; Wu, H.; Wu, L.; Zhu, J.; Xing, C.; Mao, H. Damage of uremic myocardium by p-cresyl sulfate and the ameliorative effect of Klotho by regulating SIRT6 ubiquitination. Toxicol. Lett. 2022, 367, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Bu, H.F.; Geng, H.; De Plaen, I.G.; Gao, C.; Wang, P.; Wang, X.; Kurowski, J.A.; Yang, H.; Qian, J.; et al. Sirtuin-6 preserves R-spondin-1 expression and increases resistance of intestinal epithelium to injury in mice. Mol. Med. 2017, 23, 272–284. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kanfi, Y.; Naiman, S.; Amir, G.; Peshti, V.; Zinman, G.; Nahum, L.; Bar-Joseph, Z.; Cohen, H.Y. The sirtuin SIRT6 regulates lifespan in male mice. Nature 2012, 483, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, T.; Ciarlo, E.; Rigoni, E.; Regina, J.; Le Roy, D.; Roger, T. Dual Deletion of the Sirtuins SIRT2 and SIRT3 Impacts on Metabolism and Inflammatory Responses of Macrophages and Protects From Endotoxemia. Front. Immunol. 2019, 10, 2713. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tao, J.; Zhang, J.; Ling, Y.; McCall, C.E.; Liu, T.F. Mitochondrial Sirtuin 4 Resolves Immune Tolerance in Monocytes by Rebalancing Glycolysis and Glucose Oxidation Homeostasis. Front. Immunol. 2018, 9, 419. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, L.; Liu, Q.; Cheng, J.; Cao, M.; Zhang, S.; Wan, X.; Li, J.; Tu, H. SIRT4 in ageing. Biogerontology 2023, 24, 347–362. [Google Scholar] [CrossRef] [PubMed]
- Haigis, M.C.; Mostoslavsky, R.; Haigis, K.M.; Fahie, K.; Christodoulou, D.C.; Murphy, A.J.; Valenzuela, D.M.; Yancopoulos, G.D.; Karow, M.; Blander, G.; et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006, 126, 941–954. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H.; Kempf, K.; Martin, S. Insulin and aging—A disappointing relationship. Front. Endocrinol. 2023, 14, 1261298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, J.; Zhan, H.; Ren, Y.; Feng, M.; Wang, Q.; Jiao, Q.; Wang, Y.; Liu, X.; Zhang, S.; Du, L.; et al. Sirtuin 4 activates autophagy and inhibits tumorigenesis by upregulating the p53 signaling pathway. Cell Death Differ. 2023, 30, 313–326. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, X.; Li, Q.; Tang, Y.; Hu, W.; Chen, G.; An, H.; Huang, D.; Tong, T.; Zhang, Y. Epigenetic activation of secretory phenotypes in senescence by the FOXQ1-SIRT4-GDH signaling. Cell. Death Dis. 2023, 14, 481. [Google Scholar] [CrossRef]
- Lin, W.; Chen, W.; Liu, W.; Xu, Z.; Zhang, L. Sirtuin4 suppresses the anti-neuroinflammatory activity of infiltrating regulatory T cells in the traumatically injured spinal cord. Immunology 2019, 158, 362–374. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tarantino, G.; Finelli, C.; Scopacasa, F.; Pasanisi, F.; Contaldo, F.; Capone, D.; Savastano, S. Circulating levels of sirtuin 4, a potential marker of oxidative metabolism, related to coronary artery disease in obese patients suffering from NAFLD, with normal or slightly increased liver enzymes. Oxid. Med. Cell Longev. 2014, 2014, 920676, Erratum in Oxid. Med. Cell Longev. 2018, 2018, 6357164. [Google Scholar] [CrossRef] [PubMed]
- Dowling, P.; Gargan, S.; Zweyer, M.; Henry, M.; Meleady, P.; Swandulla, D.; Ohlendieck, K. Proteome-wide Changes in the mdx-4cv The spleen due to Pathophysiological Cross Talk with Dystrophin-Deficient Skeletal Muscle. iScience 2020, 23, 101500. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fishman, D.; Isenberg, D.A. Splenic involvement in rheumatic diseases. Semin. Arthritis Rheum. 1997, 27, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, C.J.A.; Ehrlich, P.R.; Beattie, A.; Ceballos, G.; Crist, E.; Diamond, J.; Dirzo, R.; Ehrlich, A.H.; Harte, J.; Harte, M.E.; et al. Underestimating the Challenges of Avoiding a Ghastly Future. Front. Conserv. Sci. 2021, 1, 615419. [Google Scholar] [CrossRef]
- Whitmee, S.; Haines, A.; Beyrer, C.; Boltz, F.; Capon, A.G.; de Souza Dias, B.F.; Ezeh, A.; Frumkin, H.; Gong, P.; Head, P.; et al. Safeguarding human health in the Anthropocene epoch: Report of The Rockefeller Foundation-Lancet Commission on planetary health. Lancet 2015, 386, 1973–2028. [Google Scholar] [CrossRef] [PubMed]
- Eleven Global Health Issues to Watch in 2023, According to IHME Experts. Available online: https://www.healthdata.org/news-events/insights-blog/acting-data/11-global-health-issues-watch-2023-according-ihme-experts (accessed on 1 May 2023).
- Ahmed, B.M.S.; Younas, U.; Asar, T.O.; Monteiro, A.P.A.; Hayen, M.J.; Tao, S.; Dahl, G.E. Maternal heat stress reduces body and organ growth in calves: Relationship to immune status. JDS Commun. 2021, 2, 295–299. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Prüss-Üstün, A.; Wolf, J.; Corvalán, F.C.; Bos, R.; Purificación, M.N. Preventing Disease Through Healthy Environments: A Global Assessment of The Burden of Disease from Environmental Risks; World Health Organization: Geneva, Switzerland, 2016. Available online: https://iris.who.int/handle/10665/204585 (accessed on 1 May 2023).
- Bird, D. The use of questionnaires for acquiring information on public perception of natural hazards and risk mitigation—A review of current knowledge and practice. Nat. Hazards Earth Syst. Sci. 2009, 9, 1307–1325. [Google Scholar] [CrossRef]
- Pesch, B.; Brüning, T.; Frentzel-Beyme, R.; Johnen, G.; Harth, V.; Hoffmann, W.; Ko, Y.; Ranft, U.; Traugott, U.G.; Thier, R.; et al. Challenges to environmental toxicology and epidemiology: Where do we stand and which way do we go? Toxicol. Lett. 2004, 151, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Plastic, EDCs & Health. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://ipen.org/sites/default/files/documents/edc_guide_2020_v1_6ew-en.pdf&ved=2ahUKEwjCo7SKsIOGAxXL3AIHHV4cAPQQFnoECCQQAQ&usg=AOvVaw00ayi4_nzRyVZzwJ01WvS- (accessed on 1 May 2023).
- Guo, T.; Geng, X.; Zhang, Y.; Hou, L.; Lu, H.; Xing, M.; Wang, Y. New insights into the spleen injury by mitochondrial dysfunction of chicken under polystyrene microplastics stress. Poult. Sci. 2024, 103, 103674. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Q.; Zhang, Y.; Jing, L.; Zhao, H. Microplastics induced inflammation in the spleen of developmental Japanese quail (Coturnix japonica) via ROS-mediated p38 MAPK and TNF signaling pathway activation1. Environ. Pollut. 2024, 341, 122891. [Google Scholar] [CrossRef] [PubMed]
- Shaibi, T.; Balug, H.N.; Ben-Othman, M.E.; Benjama, A.E.; Elhensheri, M.; Lwaleed, B.A.; Al-Griw, M.A. Exposure to low-dose bisphenol A induces the spleen damage in a murine model: Potentially through oxidative stress? Open Vet. J. 2022, 12, 23–32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, X.; Han, H.; Xie, K.; He, N.; Yang, Z.; Jin, X.; Ma, S.; Dong, J. Difenoconazole disrupts carp intestinal physical barrier and causes inflammatory response via triggering oxidative stress and apoptosis. Pestic. Biochem. Physiol. 2023, 194, 105507, ISSN 0048-3575. Available online: https://www.sciencedirect.com/science/article/pii/S0048357523001724 (accessed on 1 May 2023). [CrossRef]
- Venter, C.; Olivier, A.; Taute, H.; Oberholzer, H.M. Histological analysis of the effects of cadmium, chromium and mercury alone and in combination on the spleen of male Sprague-Dawley rats. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 2020, 55, 925–934. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhang, H.; Song, Y.; Yang, Z.; Cai, Z. Exposure to ambient fine particulate matter impedes the function of the spleen in the mouse metabolism of high-fat diet. J. Hazard. Mater. 2022, 423 Pt B, 127129. [Google Scholar] [CrossRef] [PubMed]
- Tassinari, R.; Cubadda, F.; Moracci, G.; Aureli, F.; D’Amato, M.; Valeri, M.; De Berardis, B.; Raggi, A.; Mantovani, A.; Passeri, D.; et al. Oral, short-term exposure to titanium dioxide nanoparticles in Sprague-Dawley rat: Focus on reproductive and endocrine systems and the spleen. Nanotoxicology 2014, 8, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Weinzirl, J.; Scheffers, T.; Garnitschnig, L.; Andrae, L.; Heusser, P. Does the spleen Have a Function in Digestion? Medical History, Phylogenetic and Embryological Development of the Splenogastric System. Complement. Med. Res. 2020, 27, 357–363, English. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M. Global nutrition dynamics: The world is shifting rapidly toward a diet linked with noncommunicable diseases. Am. J. Clin. Nutr. 2006, 84, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Boakye, K.; Bovbjerg, M.; Schuna, J., Jr.; Branscum, A.; Varma, R.P.; Ismail, R.; Barbarash, O.; Dominguez, J.; Altuntas, Y.; Anjana, R.M.; et al. Urbanization and physical activity in the global Prospective Urban and Rural Epidemiology study. Sci. Rep. 2023, 13, 290. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Romero-Corral, A.; Somers, V.K.; Sierra-Johnson, J.; Thomas, R.J.; Collazo-Clavell, M.L.; Korinek, J.; Allison, T.G.; Batsis, J.A.; Sert-Kuniyoshi, F.H.; Lopez-Jimenez, F. Accuracy of body mass index in diagnosing obesity in the adult general population. Int. J. Obes. 2008, 32, 959–966. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chan, V.; Cao, L.; Wong, M.M.H.; Lo, K.; Tam, W. Diagnostic Accuracy of Waist-to-Height Ratio, Waist Circumference, and Body Mass Index in Identifying Metabolic Syndrome and Its Components in Older Adults: A Systematic Review and Meta-Analysis. Curr. Dev. Nutr. 2023, 8, 102061. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Golbidi, S.; Mesdaghinia, A.; Laher, I. Exercise in the metabolic syndrome. Oxid. Med. Cell Longev. 2012, 2012, 349710. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shephard, R.J. Responses of the human the spleen to exercise. J. Sports Sci. 2016, 34, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Stewart, I.B.; McKenzie, D.C. The human the spleen during physiological stress. Sports Med. 2002, 32, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Hanchang, W.; Wongmanee, N.; Yoopum, S.; Rojanaverawong, W. Protective role of hesperidin against diabetes induced the spleen damage: Mechanism associated with oxidative stress and inflammation. J. Food Biochem. 2022, 46, e14444. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Bishir, M.; Hodgkinson, C.; Goldman, D.; Chang, S.L. The mechanisms underlying alcohol-induced decreased splenic size: A network meta-analysis study. Alcohol. Clin. Exp. Res. 2024, 48, 72–87. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, G.; Cataldi, M.; Citro, V. Could Alcohol Abuse and Dependence on Junk Foods Inducing Obesity and/or Illicit Drug Use Represent Danger to Liver in Young People with Altered Psychological/Relational Spheres or Emotional Problems? Int. J. Mol. Sci. 2022, 23, 10406. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Di Sabatino, A.; Brunetti, L.; Carnevale Maffè, G.; Giuffrida, P.; Corazza, G.R. Is it worth investigating splenic function in patients with celiac disease? World J. Gastroenterol. 2013, 19, 2313–2318. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aichele, P.; Zinke, J.; Grode, L.; Schwendener, R.A.; Kaufmann, S.H.; Seiler, P. Macrophages of the splenic marginal zone are essential for trapping of blood-borne particulate antigen but dispensable for induction of specific T cell responses. J. Immunol. 2003, 171, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
- Junt, T.; Moseman, E.A.; Iannacone, M.; Massberg, S.; Lang, P.A.; Boes, M.; Fink, K.; Henrickson, S.E.; Shayakhmetov, D.M.; Di Paolo, N.C.; et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 2007, 450, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420–422, Erratum in Lancet Respir. Med. 2020, 8, e26. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Bao, L.; Yu, P.; Qi, F.; Gong, S.; Wang, J.; Zhao, B.; Liu, M.; Han, Y.; Deng, W.; et al. SARS-CoV-2 Causes a Systemically Multiple Organs Damages and Dissemination in Hamsters. Front. Microbiol. 2021, 11, 618891. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ooijevaar, R.E.; Terveer, E.M.; Verspaget, H.W.; Kuijper, E.J.; Keller, J.J. Clinical Application and Potential of Fecal Microbiota Transplantation. Annu. Rev. Med. 2019, 70, 335–351. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.A. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int. J. Health Sci. 2017, 11, 72–80. [Google Scholar] [PubMed] [PubMed Central]
- Nagasaki, A.; Sakamoto, S.; Arai, T.; Kato, M.; Ishida, E.; Furusho, H.; Fujii, M.; Takata, T.; Miyauchi, M. Elimination of Porphyromonas gingivalis inhibits liver fibrosis and inflammation in NASH. J. Clin. Periodontol. 2021, 48, 1367–1378. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, W.; Dai, K.; Liu, N.; Wang, J.; Lu, X.; Ma, J.; Zhang, M.; Xu, M.; Long, X.; et al. Inflammatory response of gut, spleen, and liver in mice induced by orally administered Porphyromonas gingivalis. J. Oral. Microbiol. 2022, 14, 2088936. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jia, S.; Li, X.; Du, Q. Host insulin resistance caused by Porphyromonas gingivalis-review of recent progresses. Front. Cell Infect. Microbiol. 2023, 13, 1209381. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, L.; Parekh, V.V.; Hsiao, J.; Kitamura, D.; Van Kaer, L. Spleen supports a pool of innate-like B cells in white adipose tissue that protects against obesity-associated insulin resistance. Proc. Natl. Acad. Sci. USA 2014, 111, E4638–E4647. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arıcı, S.; Ay, O.F. Effect of spleen size on complications of laparoscopic sleeve gastrectomy. Laparosc. Endosc. Surg. Sci. 2023, 30, 23–28. [Google Scholar] [CrossRef]
- Cataldi, M.; Vigliotti, C.; Mosca, T.; Cammarota, M.; Capone, D. Emerging Role of the Spleen in the Pharmacokinetics of Monoclonal Antibodies, Nanoparticles and Exosomes. Int. J. Mol. Sci. 2017, 18, 1249. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hiraiwa, H.; Yura, Y.; Okumura, T.; Murohara, T. Interplay of the heart, spleen, and bone marrow in heart failure: The role of splenic extramedullary hematopoiesis. Heart Fail. Rev. 2024, 29, 1049–1063. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, L.; He, M.; Ying, C.; Chu, H. Mechanisms of inflammation after ischemic stroke in brain-peripheral crosstalk. Front. Mol. Neurosci. 2024, 17, 1400808. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hua, T.; Zhang, G.; Yao, Y.; Jia, H.; Liu, W. Research progress of megakaryocytes and platelets in lung injury. Ann. Med. 2024, 56, 2362871. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lantinga, M.A.; van Kleef, L.A.; den Hoed, C.M.; De Knegt, R.J. The spleen Stiffness Measurement Across the Spectrum of Liver Disease Patients in Real-World Practice. J. Clin. Exp. Hepatol. 2023, 13, 414–427. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kutaiba, N.; Chung, W.; Goodwin, M.; Testro, A.; Egan, G.; Lim, R. The impact of hepatic and splenic volumetric assessment in imaging for chronic liver disease: A narrative review. Insights Imaging. 2024, 15, 146–159. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Hemolitic Anemia and Neutropenia |
Lupus Erythematosus and Adult-Onset Still’s Disease |
Sarcoidosis and Rheumatoid Arthritis |
Niemann–Pick Disease |
Gaucher Disease and Sickle Cell Disease |
Acute Viral Hepatitis, Mononucleosis, and HIV |
Bacterial Endocarditis and Tuberculosis |
Malaria, Leishmaniasis, and Toxoplasmosis |
Chronic Hepatitis and Cirrhosis |
Leukemia and Myeloproliferative Neoplasms |
Lymphomas and Metastatic Cancer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarantino, G.; Citro, V. Crosstalk Between the Spleen and Other Organs/Systems: Downstream Signaling Events. Immuno 2024, 4, 479-501. https://doi.org/10.3390/immuno4040030
Tarantino G, Citro V. Crosstalk Between the Spleen and Other Organs/Systems: Downstream Signaling Events. Immuno. 2024; 4(4):479-501. https://doi.org/10.3390/immuno4040030
Chicago/Turabian StyleTarantino, Giovanni, and Vincenzo Citro. 2024. "Crosstalk Between the Spleen and Other Organs/Systems: Downstream Signaling Events" Immuno 4, no. 4: 479-501. https://doi.org/10.3390/immuno4040030
APA StyleTarantino, G., & Citro, V. (2024). Crosstalk Between the Spleen and Other Organs/Systems: Downstream Signaling Events. Immuno, 4(4), 479-501. https://doi.org/10.3390/immuno4040030