Correlation of Anti-HLA IgA Alloantibodies and Fc Receptor Motives with Kidney Allograft Survival
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Antibody Screening and Specification
2.3. Genotyping of FCAR and FCGR Polymorphisms
2.4. Statistical Analysis
3. Results
3.1. Anti-HLA IgA Antibodies Are Frequent in Kidney Transplant Recipients
3.2. In Patients with Kidney Allograft Failure the Presence of Anti-HLA IgA Antibodies Correlates with Reduced Graft Survival
3.3. FCAR and FCGR Polymorphism and Allograft Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Einecke, G.; Sis, B.; Reeve, J.; Mengel, M.; Campbell, P.M.; Hidalgo, L.G.; Kaplan, B.; Halloran, P.F. Antibody-mediated microcirculation injury is the major cause of late kidney transplant failure. Am. J. Transpl. 2009, 9, 2520–2531. [Google Scholar] [CrossRef]
- Gaston, R.S.; Cecka, J.M.; Kasiske, B.L.; Fieberg, A.M.; Leduc, R.; Cosio, F.C.; Gourishankar, S.; Grande, J.; Halloran, P.; Hunsicker, L.; et al. Evidence for antibody-mediated injury as a major determinant of late kidney allograft failure. Transplantation 2010, 90, 68–74. [Google Scholar] [CrossRef]
- Lee, P.C.; Terasaki, P.I.; Takemoto, S.K.; Lee, P.H.; Hung, C.J.; Chen, Y.L.; Tsai, A.; Lei, H.Y. All chronic rejection failures of kidney transplants were preceded by the development of HLA antibodies. Transplantation 2002, 74, 1192–1194. [Google Scholar] [CrossRef]
- Sellares, J.; de Freitas, D.G.; Mengel, M.; Reeve, J.; Einecke, G.; Sis, B.; Hidalgo, L.G.; Famulski, K.; Matas, A.; Halloran, P.F. Understanding the causes of kidney transplant failure: The dominant role of antibody-mediated rejection and nonadherence. Am. J. Transpl. 2012, 12, 388–399. [Google Scholar] [CrossRef]
- Chen, G.; Sequeira, F.; Tyan, D.B. Novel C1q assay reveals a clinically relevant subset of human leukocyte antigen antibodies independent of immunoglobulin G strength on single antigen beads. Hum. Immunol. 2011, 72, 849–858. [Google Scholar] [CrossRef]
- Arnold, M.L.; Heinemann, F.M.; Horn, P.; Ziemann, M.; Lachmann, N.; Muhlbacher, A.; Dick, A.; Ender, A.; Thammanichanond, D.; Fischer, G.F.; et al. 16(th) IHIW: Anti-HLA alloantibodies of the of IgA isotype in re-transplant candidates. Int. J. Immunogenet. 2013, 40, 17–20. [Google Scholar] [CrossRef]
- Arnold, M.L.; Bach, C.; Heinemann, F.M.; Horn, P.A.; Ziemann, M.; Lachmann, N.; Muhlbacher, A.; Dick, A.; Ender, A.; Thammanichanond, D.; et al. Anti-HLA alloantibodies of the IgA isotype in re-transplant candidates part II: Correlation with graft survival. Int. J. Immunogenet. 2018, 45, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Heineke, M.H.; van Egmond, M. Immunoglobulin A: Magic bullet or Trojan horse? Eur. J. Clin. Invest. 2017, 47, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, R.C. Role of IgA and IgA fc receptors in inflammation. J. Clin. Immunol. 2010, 30, 1–9. [Google Scholar] [CrossRef]
- Arnold, M.L.; Kainz, A.; Hidalgo, L.G.; Eskandary, F.; Kozakowski, N.; Wahrmann, M.; Haslacher, H.; Oberbauer, R.; Heilos, A.; Spriewald, B.M.; et al. Functional Fc gamma receptor gene polymorphisms and donor-specific antibody-triggered microcirculation inflammation. Am. J. Transplant. 2018, 18, 2261–2273. [Google Scholar] [CrossRef] [Green Version]
- Fehr, T.; Gaspert, A. Antibody-mediated kidney allograft rejection: Therapeutic options and their experimental rationale. Transpl. Int. 2012, 25, 623–632. [Google Scholar] [CrossRef]
- Nankivell, B.J.; Borrows, R.J.; Fung, C.L.; O’Connell, P.J.; Allen, R.D.; Chapman, J.R. The natural history of chronic allograft nephropathy. N. Engl. J. Med. 2003, 349, 2326–2333. [Google Scholar] [CrossRef] [Green Version]
- Solez, K.; Axelsen, R.A.; Benediktsson, H.; Burdick, J.F.; Cohen, A.H.; Colvin, R.B.; Croker, B.P.; Droz, D.; Dunnill, M.S.; Halloran, P.F.; et al. International standardization of criteria for the histologic diagnosis of renal allograft rejection: The Banff working classification of kidney transplant pathology. Kidney Int. 1993, 44, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Nankivell, B.J.; Chapman, J.R. Chronic allograft nephropathy: Current concepts and future directions. Transplantation 2006, 81, 643–654. [Google Scholar] [CrossRef]
- Halloran, P.F. Call for revolution: A new approach to describing allograft deterioration. Am. J. Transplant. 2002, 2, 195–200. [Google Scholar] [CrossRef]
- Brandsma, A.M.; Bondza, S.; Evers, M.; Koutstaal, R.; Nederend, M.; Jansen, J.H.M.; Rosner, T.; Valerius, T.; Leusen, J.H.W.; Ten Broeke, T. Potent Fc Receptor Signaling by IgA Leads to Superior Killing of Cancer Cells by Neutrophils Compared to IgG. Front. Immunol. 2019, 10, 704. [Google Scholar] [CrossRef] [Green Version]
- van der Steen, L.P.; Bakema, J.E.; Sesarman, A.; Florea, F.; Tuk, C.W.; Kirtschig, G.; Hage, J.J.; Sitaru, C.; van Egmond, M. Blocking Fcalpha receptor I on granulocytes prevents tissue damage induced by IgA autoantibodies. J. Immunol. 2012, 189, 1594–1601. [Google Scholar] [CrossRef] [Green Version]
- Roos, A.; Bouwman, L.H.; van Gijlswijk-Janssen, D.J.; Faber-Krol, M.C.; Stahl, G.L.; Daha, M.R. Human IgA activates the complement system via the mannan-binding lectin pathway. J. Immunol. 2001, 167, 2861–2868. [Google Scholar] [CrossRef] [Green Version]
- Roos, A.; Rastaldi, M.P.; Calvaresi, N.; Oortwijn, B.D.; Schlagwein, N.; van Gijlswijk-Janssen, D.J.; Stahl, G.L.; Matsushita, M.; Fujita, T.; van Kooten, C.; et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J. Am. Soc. Nephrol. 2006, 17, 1724–1734. [Google Scholar] [CrossRef] [Green Version]
- Nauser, C.L.; Farrar, C.A.; Sacks, S.H. Complement Recognition Pathways in Renal Transplantation. J. Am. Soc. Nephrol. 2017, 28, 2571–2578. [Google Scholar] [CrossRef]
- Sofue, T.; Inui, M.; Hara, T.; Moritoki, M.; Nishijima, Y.; Kushida, Y.; Nishiyama, A.; Kakehi, Y.; Kohno, M. Association between post-transplantation immunoglobulin A deposition and reduced allograft function. Transplant. Proc. 2015, 47, 332–336. [Google Scholar] [CrossRef]
- Arnold, M.L.; Dechant, M.; Doxiadis, I.I.N.; Spriewald, B.M. Prevalence and specificity of immunoglobulin G and immunoglobulin A non-complement-binding anti-HLA alloantibodies in retransplant candidates. Tissue Antigens 2008, 72, 60–66. [Google Scholar] [CrossRef]
- Kerr, M.A. The structure and function of human IgA. Biochem. J. 1990, 271, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Phalipon, A.; Corthesy, B. Novel functions of the polymeric Ig receptor: Well beyond transport of immunoglobulins. Trends Immunol. 2003, 24, 55–58. [Google Scholar] [CrossRef]
- Perse, M.; Veceric-Haler, Z. The Role of IgA in the Pathogenesis of IgA Nephropathy. Int. J. Mol. Sci. 2019, 20, 6199. [Google Scholar] [CrossRef] [Green Version]
- Steffen, U.; Koeleman, C.A.; Sokolova, M.V.; Bang, H.; Kleyer, A.; Rech, J.; Unterweger, H.; Schicht, M.; Garreis, F.; Hahn, J.; et al. IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nat. Commun. 2020, 11, 120. [Google Scholar] [CrossRef] [Green Version]
- Car, H.; Karahan, G.E.; Dreyer, G.J.; Brand-Schaaf, S.H.; de Vries, A.P.J.; van Kooten, C.; Kramer, C.S.M.; Roelen, D.L.; Claas, F.H.J.; Heidt, S. Low incidence of IgA isotype of HLA antibodies in alloantigen exposed individuals. HLA 2021, 97, 101–111. [Google Scholar] [CrossRef]
- Hansen, I.S.; Hoepel, W.; Zaat, S.A.J.; Baeten, D.L.P.; den Dunnen, J. Serum IgA Immune Complexes Promote Proinflammatory Cytokine Production by Human Macrophages, Monocytes, and Kupffer Cells through FcalphaRI-TLR Cross-Talk. J. Immunol. 2017, 199, 4124–4131. [Google Scholar] [CrossRef] [Green Version]
Kidney Transplant Patients | With Graft Failure Group I, n = 276 | Without Failure Group II, n = 238 |
---|---|---|
Age at blood sampling, years, median (range) | 49 (14–75) | 56 (3–84) |
Age at last tx, years, median (range) | 36 (1–74) | 48 (2–76) |
Time between Tx and blood sampling, months, median (range) | 77 (0.5–446) | 62 (0.3–372) |
TTD 1, months, median (range) | 105 (1–348) | - |
Sex, total, n (%) | ||
Male | 167 (60.5%) | 177 (64%) |
Female | 109 (39.5%) | 99 (36%) |
No of previous transplants, total, n (%) | ||
1 | 233 (84%) | 238 (100%) |
>1 | 43 (16%) | 0 |
Anti-HLA alloantibody status, total, n (%) | ||
Presence of IgA and IgG antibodies * | ||
Anti-HLA IgA antibodies | 89 (32%) | 124 (52%) |
Anti-HLA IgG antibodies | 243 (88%) | 107 (45%) |
Anti-HLA antibody positive | 246 (89%) | 162 (68%) |
Combination of IgA and IgG antibodies * | ||
IgG+/IgA+ | 86 (31%) | 69 (29%) |
IgG+/IgA− | 157 (57%) | 38 (16%) |
IgG−/IgA+ | 3 (1%) | 55 (23%) |
IgG−/IgA− | 30 (11%) | 76 (32%) |
IgA subclass antibodies * | ||
IgA1 | 26 (9%) | 87 (37%) |
IgA2 | 9 (3%) | 15 (6%) |
IgA1 and IgA2 | 54 (20%) | 22 (9%) |
IgA negative | 187 (68%) | 114 (48%) |
n (%) | IgA+ | IgA− | Total |
TTD < median (105 months) | 58 (65%) * | 89 (48%) | 147 |
TTD > median (105 months) | 31 (35%) | 98 (52%) | 129 |
Total | 89 (100%) | 187 (100%) | 276 |
n(%) | IgG+ | IgG− | Total |
TTD < median (105 months) | 130 (53%) | 17 (52%) | 147 |
TTD > median (105 months) | 113 (47%) | 16 (48%) | 129 |
Total | 243 (100%) | 33 (100%) | 276 |
IgG− IgA− | IgG+ IgA− | IgG+ IgA+ | IgG HLA Class I + IgA+ | IgG HLA Class II + IgA+ | IgG HLA Class I+II + IgA+ | |
---|---|---|---|---|---|---|
Number of patients | 30 | 157 | 86 | 5 | 14 | 67 |
TTD (months) | 127 | 116 | 88 | 87 | 90 | 88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnold, M.-L.; Steffen, U.; Wiesener, M.; Bach, C.; Spriewald, B.M.; Lindemann, M. Correlation of Anti-HLA IgA Alloantibodies and Fc Receptor Motives with Kidney Allograft Survival. Immuno 2022, 2, 372-386. https://doi.org/10.3390/immuno2020023
Arnold M-L, Steffen U, Wiesener M, Bach C, Spriewald BM, Lindemann M. Correlation of Anti-HLA IgA Alloantibodies and Fc Receptor Motives with Kidney Allograft Survival. Immuno. 2022; 2(2):372-386. https://doi.org/10.3390/immuno2020023
Chicago/Turabian StyleArnold, Marie-Luise, Ulrike Steffen, Michael Wiesener, Christian Bach, Bernd M. Spriewald, and Monika Lindemann. 2022. "Correlation of Anti-HLA IgA Alloantibodies and Fc Receptor Motives with Kidney Allograft Survival" Immuno 2, no. 2: 372-386. https://doi.org/10.3390/immuno2020023
APA StyleArnold, M.-L., Steffen, U., Wiesener, M., Bach, C., Spriewald, B. M., & Lindemann, M. (2022). Correlation of Anti-HLA IgA Alloantibodies and Fc Receptor Motives with Kidney Allograft Survival. Immuno, 2(2), 372-386. https://doi.org/10.3390/immuno2020023