Holiday Internet Usage Time and the Risk of Internet Addiction Tendency among Working Adults in their 30s in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Internet Usage Time
2.2.2. Depression
2.2.3. Hikikomori and Modern-Type Depression
2.2.4. Internet and Smartphone Addiction
2.2.5. Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, (DSM-IV) Personality Disorders Personality Questionnaire (SCID-II-PQ)
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Young, K.S. Internet addiction: The emergence of a new clinical disorder. CyberPsychology Behav. 1998, 1, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Bisen, S.S.; Deshpande, Y.M. Understanding internet addiction: A comprehensive review. Ment. Health Rev. J. 2018, 23, 165–184. [Google Scholar] [CrossRef] [Green Version]
- Kuss, D.; Griffiths, M.; Karila, L.; Billieux, J. Internet addiction: A systematic review of epidemiological research for the last decade. Curr. Pharm. Des. 2014, 20, 4026–4052. [Google Scholar] [CrossRef] [Green Version]
- Petry, N.M.; Rehbein, F.; Ko, C.H.; O’Brien, C.P. Internet gaming disorder in the DSM-5. Curr. Psychiatry Rep. 2015, 17, 72. [Google Scholar] [CrossRef]
- Mihara, S.; Osaki, Y.; Nakayama, H.; Sakuma, H.; Ikeda, M.; Itani, O.; Kaneita, Y.; Kanda, H.; Ohida, T.; Higuchi, S. Internet use and problematic Internet use among adolescents in Japan: A nationwide representative survey. Addict. Behav. Rep. 2016, 4, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Przybylski, A.K.; Weinstein, N. A large-scale test of the Goldilocks hypothesis: Quantifying the relations between digital-screen use and the mental well-being of adolescents. Psychol. Sci. 2017, 28, 204–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, H.; Ueno, F.; Mihara, S.; Kitayuguchi, T.; Higuchi, S. Relationship between problematic Internet use and age at initial weekly Internet use. J. Behav. Addict. 2020, 9, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Tsumura, H.; Kanda, H.; Sugaya, N.; Tsuboi, S.; Takahashi, K. Prevalence and Risk Factors of Internet Addiction Among Employed Adults in Japan. J. Epidemiol. 2018, 28, 202–206. [Google Scholar] [CrossRef] [Green Version]
- Tateno, M.; Teo, A.R.; Ukai, W.; Kanazawa, J.; Katsuki, R.; Kubo, H.; Kato, T.A. Internet addiction, smartphone addiction, and hikikomori trait in Japanese young adult: Social isolation and social network. Front. Psychiatry 2019, 10, 455. [Google Scholar] [CrossRef] [Green Version]
- Van Deursen, A.J.A.M.; Bolle, C.L.; Hegner, S.M.; Kommers, P.A.M. Modeling habitual and addictive smartphone behavior: The role of smartphone usage types, emotional intelligence, social stress, self-regulation, age, and gender. Comput. Human Behav. 2015, 45, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Frost, R.L.; Rickwood, D.J. A systematic review of the mental health outcomes associated with Facebook use. Comput. Human Behav. 2017, 76, 576–600. [Google Scholar] [CrossRef]
- Chabrol, H.; Laconi, S.; Delfour, M.; Moreau, A. Contributions of psychopathological and interpersonal variables to problematic facebook use in adolescents and young adults. Int. J. High Risk Behav. Addict. 2017, 6, e32773. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Han, X.; Jin, C.; Yan, Y.; Potenza, M.N. Are males more likely to be addicted to the internet than females? A meta-analysis involving 34 global jurisdictions. Comput. Human Behav. 2019, 99, 86–100. [Google Scholar] [CrossRef]
- Yoon, S.; Kleinman, M.; Mertz, J.; Brannick, M. Is social network site usage related to depression? A meta-analysis of Facebook–depression relations. J. Affect. Disord. 2019, 248, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.-H.; Lee, K.-H.; Ko, C.-H.; Hsiao, R.C.; Hu, H.-F.; Yen, C.-F. Relationship between borderline personality symptoms and Internet addiction: The mediating effects of mental health problems. J. Behav. Addict. 2017, 6, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Zink, J.; Belcher, B.R.; Imm, K.; Leventhal, A.M. The relationship between screen-based sedentary behaviors and symptoms of depression and anxiety in youth: A systematic review of moderating variables. BMC Public Health 2020, 20, 472. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Blasco, R.; Robres, A.Q.; Sánchez, A.S. Internet addiction in young adults: A meta-analysis and systematic review. Comput. Hum. Behav. 2022, 130, 107201. [Google Scholar] [CrossRef]
- Ratan, Z.A.; Parrish, A.-M.; Zaman SBin Alotaibi, M.S.; Hosseinzadeh, H. Smartphone Addiction and Associated Health Outcomes in Adult Populations: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 12257. [Google Scholar] [CrossRef]
- Inagaki, M.; Ohtsuki, T.; Yonemoto, N.; Kawashima, Y.; Saitoh, A.; Oikawa, Y.; Kurosawa, M.; Muramatsu, K.; Furukawa, T.A.; Yamada, M. Validity of the Patient Health Questionnaire (PHQ)-9 and PHQ-2 in general internal medicine primary care at a Japanese rural hospital: A cross-sectional study. Gen. Hosp. Psychiatry 2013, 35, 592–597. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Kojima, M.; Furukawa, T.A.; Takahashi, H.; Kawai, M.; Nagaya, T.; Tokudome, S. Cross-cultural validation of the Beck Depression Inventory-II in Japan. Psychiatry Res. 2002, 110, 291–299. [Google Scholar] [CrossRef]
- Furukawa, T.A.; Streiner, D.L.; Azuma, H.; Higuchi, T.; Kamijima, K.; Kanba, S.; Ozaki, N.; Aoba, A.; Murasaki, M.; Miura, S. Cross-cultural equivalence in depression assessment: Japan-Europe-North American study. Acta Psychiatr. Scand. 2005, 112, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M. Development of a rating scale for primary depressive illness. Br. J. Soc. Clin. Psychol. 1967, 6, 278–296. [Google Scholar] [CrossRef] [PubMed]
- Teo, A.R.; Chen, J.I.; Kubo, H.; Katsuki, R.; Sato-Kasai, M.; Shimokawa, N.; Hayakawa, K.; Umene-Nakano, W.; Aikens, J.E.; Kanba, S.; et al. Development and validation of the 25-item Hikikomori Questionnaire (HQ-25). Psychiatry Clin. Neurosci. 2018, 72, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.A.; Katsuki, R.; Kubo, H.; Shimokawa, N.; Sato-Kasai, M.; Hayakawa, K.; Kuwano, N.; Umene-Nakano, W.; Tateno, M.; Setoyama, D.; et al. Development and validation of the 22-item Tarumi’s Modern-Type Depression Trait Scale: Avoidance of Social Roles, Complaint, and Low Self-Esteem (TACS-22). Psychiatry Clin. Neurosci. 2019, 73, 448–457. [Google Scholar] [CrossRef]
- Young, K.S. Caught in the Net: How to Recognize the Signs of Internet Addiction—And a Winning Strategy for Recovery. Willey: New York, NY, USA, 1998. Available online: https://www.wiley.com/en-us/Caught+in+the+Net%3A+How+to+Recognize+the+Signs+of+Internet+Addiction+and+a+Winning+Strategy+for+Recovery-p-9780471191599 (accessed on 28 January 2021).
- King, D.L.; Delfabbro, P.H.; Griffiths, M.D.; Gradisar, M. Assessing clinical trials of Internet addiction treatment: A systematic review and CONSORT evaluation. Clin. Psychol. Rev. 2011, 31, 1110–1116. [Google Scholar] [CrossRef]
- Osada, H. Internet addiction in Japanese college students: Is Japanese version of Internet Addiction Test (JIAT) useful as a screening tool? Bull. Senshu Univ. Sch. Hum. Sci. 2013, 3, 71–80. [Google Scholar]
- Kwon, M.; Lee, J.Y.; Won, W.Y.; Park, J.W.; Min, J.A.; Hahn, C.; Gu, X.; Choi, J.-H.; Kim, D.-J. Development and validation of a smartphone addiction scale (SAS). PLoS ONE 2013, 8, e56936. [Google Scholar] [CrossRef]
- Tateno, M.; Kim, D.J.; Teo, A.R.; Skokauskas, N.; Guerrero, A.P.S.; Kato, T.A. Smartphone addiction in Japanese college students: Usefulness of the Japanese version of the smartphone addiction scale as a screening tool for a new form of internet addiction. Psychiatry Investig. 2019, 16, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.D.; Bagby, R.M.; Pilkonis, P.A.; Reynolds, S.K.; Lynam, D.R. A simplified technique for scoring DSM-IV personality disorders with the five-factor model. Assessment 2005, 12, 404–415. [Google Scholar] [CrossRef]
- Ryder, A.G.; Costa, P.T.; Bagby, R.M. Evaluation of the SCID-II Personality Disorder Traits for DSM-IV: Coherence, Discrimination, Relations with General Personality Traits, and Functional Impairment. J. Personal. Disord. 2007, 21, 626–637. [Google Scholar] [CrossRef] [PubMed]
- Tateno, M.; Kato, T.A. Personality traits of female vocational school students in Japan with smartphone addiction with comorbid modern type depression traits. Psychiatry Clin. Neurosci. 2022, 76, 675–676. [Google Scholar] [CrossRef] [PubMed]
- Burkauskas, J.; Gecaite-stonciene, J.; Demetrovics, Z.; Griffiths, M.D.; Király, O. Prevalence of problematic Internet use during the coronavirus disease 2019 pandemic. Curr. Opin. Behav. Sci. 2022, 46, 101179. [Google Scholar] [CrossRef]
- Paulus, F.W.; Joas, J.; Gerstner, I.; Kühn, A.; Wenning, M.; Gehrke, T.; Burckhart, H.; Richter, U.; Nonnenmacher, A.; Zemlin, M.; et al. Problematic Internet Use among Adolescents 18 Months after the Onset of the COVID-19 Pandemic. Children 2022, 9, 1724. [Google Scholar] [CrossRef] [PubMed]
- Oka, T.; Hamamura, T.; Miyake, Y.; Kobayashi, N.; Honjo, M.; Kawato, M.; Kubo, T.; Chiba, T. Prevalence and risk factors of internet gaming disorder and problematic internet use before and during the COVID-19 pandemic: A large online survey of Japanese adults. J. Psychiatr. Res. 2021, 142, 218–225. [Google Scholar] [CrossRef]
Total n = 129 (SE) | Females n = 71 (SE) | Males n = 58 (SE) | p-Value | ||
---|---|---|---|---|---|
Age, years | 34.81 (0.25) | 34.82 (0.32) | 34.79 (0.41) | 0.975 | |
Internet Usage Time | On weekdays, hours | 3.001 (0.20) | 2.981 (0.30) | 3.026 (0.27) | 0.336 |
On holidays, hours | 2.858 (0.18) | 2.981 (0.21) | 2.707 (0.32) | 0.112 | |
Depressive Tendency | BDI-II | 6.62 (0.65) | 7.5 (0.94) | 5.51 (0.87) | 0.214 |
PHQ-9 | 3.29 (0.28) | 3.73 (0.38) | 2.76 (0.42) | 0.022 | |
HRSD | 2.18 (0.26) | 2.55 (0.37) | 1.74 (0.37) | 0.048 | |
Modern-Type Depression and Hikikomori | TACS-22 # | 33.91 (0.87) | 33.59 (1.15) | 34.32 (1.35) | 0.681 |
HQ-25 | 26.19 (1.49) | 26.42 (1.94) | 25.9 (2.33) | 0.718 | |
Internet and Smartphone Addiction | IAT # | 27.53 (1.43) | 25.32 (1.65) | 30.33 (2.46) | 0.084 |
SAS-SV | 24.26 (0.75) | 24.65 (1.01) | 23.77 (1.14) | 0.717 | |
SCID-II-PQ | Avoidant | 2.03 (0.18) | 2.17 (0.23) | 1.85 (0.27) | 0.3 |
Dependent | 1.36 (0.14) | 1.54 (0.22) | 1.13 (0.18) | 0.298 | |
Obsessive-compulsive | 2.97 (0.16) | 3.05 (0.21) | 2.88 (0.25) | 0.713 | |
Passive-aggressive | 1.46 (0.15) | 1.31 (0.20) | 1.65 (0.23) | 0.194 | |
Depressive | 1.96 (0.19) | 2.11 (0.27) | 1.77 (0.28) | 0.495 | |
Paranoid | 1.21 (0.14) | 1.26 (0.21) | 1.15 (0.18) | 0.656 | |
Schizotypal | 1.09 (0.12) | 1.28 (0.18) | 0.85 (0.16) | 0.074 | |
Schizoid | 1.26 (0.12) | 1.31 (0.16) | 1.21 (0.18) | 0.615 | |
Histrionic | 1.57 (0.14) | 1.35 (0.17) | 1.85 (0.23) | 0.099 | |
Narcissistic | 1.9 (0.17) | 1.55 (0.21) | 2.33 (0.27) | 0.027 | |
Borderline | 1.72 (0.21) | 2.14 (0.30) | 1.19 (0.25) | 0.021 | |
Antisocial | 1.1 (0.15) | 0.71 (0.13) | 1.61 (0.30) | 0.023 |
Internet Time Using on Holidays | ||||||||||
Total Participants n = 129 | SNS– n = 85 | SNS+ n = 44 | Females n = 71 | Males n = 58 | ||||||
r | p | r | p | r | p | r | p | r | p | |
BDI-II | 0.119 | 0.206 | 0.026 | 0.824 | 0.250 | 0.119 | 0.084 | 0.512 | 0.125 | 0.384 |
PHQ-9 | 0.182 | 0.039 | 0.134 | 0.222 | 0.251 | 0.101 | 0.136 | 0.260 | 0.193 | 0.146 |
HRSD | 0.173 | 0.053 | 0.217 | 0.048 | 0.062 | 0.695 | 0.187 | 0.125 | 0.112 | 0.409 |
TACS 22 # | 0.085 | 0.344 | 0.056 | 0.615 | 0.149 | 0.333 | 0.022 | 0.859 | 0.144 | 0.285 |
HQ 25 | 0.095 | 0.313 | 0.049 | 0.680 | 0.145 | 0.365 | 0.069 | 0.587 | 0.112 | 0.433 |
IAT # | 0.309 | 0.001 | 0.338 | 0.003 | 0.310 | 0.048 | 0.295 | 0.017 | 0.341 | 0.014 |
SAS | 0.341 | <0.001 | 0.398 | <0.001 | 0.262 | 0.085 | 0.408 | <0.001 | 0.257 | 0.054 |
Avoidant | 0.110 | 0.240 | 0.098 | 0.400 | 0.064 | 0.689 | 0.112 | 0.375 | 0.053 | 0.708 |
Dependent | 0.180 | 0.053 | 0.165 | 0.154 | 0.143 | 0.372 | 0.208 | 0.096 | 0.125 | 0.377 |
Obsessive- compulsive | 0.078 | 0.405 | 0.050 | 0.666 | 0.051 | 0.751 | 0.186 | 0.137 | −0.060 | 0.674 |
Passive- aggressive | 0.065 | 0.484 | 0.045 | 0.700 | 0.072 | 0.656 | 0.112 | 0.373 | 0.023 | 0.872 |
Depressive | 0.157 | 0.091 | 0.083 | 0.477 | 0.253 | 0.110 | 0.134 | 0.289 | 0.136 | 0.335 |
Paranoid | 0.012 | 0.899 | −0.006 | 0.958 | −0.017 | 0.915 | −0.043 | 0.734 | 0.141 | 0.317 |
Schizotypal | 0.169 | 0.069 | 0.117 | 0.312 | 0.276 | 0.081 | 0.233 | 0.062 | 0.033 | 0.815 |
Schizoid | 0.132 | 0.157 | 0.065 | 0.578 | 0.227 | 0.153 | 0.131 | 0.299 | 0.107 | 0.451 |
Histrionic | −0.075 | 0.424 | −0.160 | 0.168 | 0.081 | 0.613 | 0.052 | 0.682 | −0.188 | 0.182 |
Narcissistic | 0.046 | 0.621 | −0.013 | 0.909 | 0.141 | 0.384 | 0.157 | 0.216 | −0.017 | 0.905 |
Borderline | 0.229 | 0.013 | 0.098 | 0.401 | 0.430 | 0.005 | 0.216 | 0.085 | 0.165 | 0.243 |
Antisocial | −0.063 | 0.504 | −0.084 | 0.474 | −0.008 | 0.961 | −0.093 | 0.462 | 0.024 | 0.867 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuo, K.; Tateno, M.; Katsuki, R.; Nakao, T.; Kato, T.A. Holiday Internet Usage Time and the Risk of Internet Addiction Tendency among Working Adults in their 30s in Japan. Psychiatry Int. 2023, 4, 200-207. https://doi.org/10.3390/psychiatryint4030020
Matsuo K, Tateno M, Katsuki R, Nakao T, Kato TA. Holiday Internet Usage Time and the Risk of Internet Addiction Tendency among Working Adults in their 30s in Japan. Psychiatry International. 2023; 4(3):200-207. https://doi.org/10.3390/psychiatryint4030020
Chicago/Turabian StyleMatsuo, Keitaro, Masaru Tateno, Ryoko Katsuki, Tomohiro Nakao, and Takahiro A. Kato. 2023. "Holiday Internet Usage Time and the Risk of Internet Addiction Tendency among Working Adults in their 30s in Japan" Psychiatry International 4, no. 3: 200-207. https://doi.org/10.3390/psychiatryint4030020
APA StyleMatsuo, K., Tateno, M., Katsuki, R., Nakao, T., & Kato, T. A. (2023). Holiday Internet Usage Time and the Risk of Internet Addiction Tendency among Working Adults in their 30s in Japan. Psychiatry International, 4(3), 200-207. https://doi.org/10.3390/psychiatryint4030020