Risk Factors and Treatment Outcome Analysis Associated with Second-Line Drug-Resistant Tuberculosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Enrollment
2.2. Line Probe Assay
2.3. Treatment Outcome Analysis
2.4. Statistical Analysis
3. Results
3.1. Risk Factors Associated with RR-TB
3.2. Risk Factors Associated with INH Mono-Resistant
3.3. Predictors of Poor Treatment Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MDR | multidrug resistant |
XDR | extremely drug resistant |
H/INH | isoniazid |
R/RIF | Rifampicin |
SLID | second line injectable drug |
RR | relative risk |
FQ | fluoroquinolone |
LFX | levofloxacin |
MFX | moxifloxacin |
RR-TB | rifampicin resistant tuberculosis |
QRDR | quinolone resistance-determining region |
AMK | amikacin |
CAM | capreomycin |
KAN | kanamycin |
DR-TB | drug resistant tuberculosis |
STS | short term studentship |
CI | confidence interval |
References
- Angelo, L.; Lanfranco, F.; Federico, G. Drug-Resistant Tuberculosis 2020: Where We Stand. Appl. Sci. 2020, 10, 2153. [Google Scholar]
- Global Tuberculosis Report 2021; World Health Organization: Geneva, Switzerland, 2021.
- Mustazzolu, A.; Borroni, E.; Cirillo, D.M.; Giannoni, F.; Iacobino, A.; Italian Multicentre Study on Resistance to Anti-Tuberculosis Drugs (SMIRA); Fattorini, L. Trend in rifampicin-, multidrug- and extensively drug-resistant tuberculosis in Italy, 2009–2016. Eur. Respir. J. 2018, 52, 1800070. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhou, C.; Shi, L.; Meng, H.; Yan, H. Prevalence and characterization of drug-resistant tuberculosis in a local hospital of Northeast China. Int. J. Infect. Dis. 2014, 22, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Smita, S.S.; Venkatesh, K.; Usharani, B.; Anbazhagi, S.; Vidya Raj, C.K.; Chitra, A.; Muthuraj, M. Prevalence and factors associated with multidrug-resistant tuberculosis in South India. Sci. Rep. 2020, 10, 17552. [Google Scholar] [CrossRef]
- Ho, J.; Jelfs, P.; Sintchenko, V. Fluoroquinolone resistance in non-multidrug-resistant tuberculosis, surveillance study in New South Wales, Australia, and a review of global resistance rates. Int. J. Infect. Dis. 2014, 26, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Parul, S.; Pratima, D.; Pooja, S.; Jaiswal, I.; Mastan, S.; Amita, J. A study on pre-XDR & XDR tuberculosis & their prevalent genotypes in clinical isolates of Mycobacterium tuberculosis in north India. Indian J. Med. Res. 2016, 143, 341–347. [Google Scholar]
- Ginsburg, A.S.; Grosset, J.H. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect. Dis. 2003, 3, 432–442. [Google Scholar] [CrossRef]
- Tagliani, E.; Cabibbe, A.M.; Miotto, P.; Borroni, E.; Toro, J.C.; Mansjo, M. Diagnostic performance of the new version (v2.0) of genotype MTBDRsl assay for detection of resistance to fluoroquinolones and second-line injectable drugs: A multicenter study. J. Clin. Microbiol. 2015, 53, 2961–2969. [Google Scholar] [CrossRef] [Green Version]
- Guidance for National Tuberculosis Programmes on the Management of Tuberculosis in Children, 2nd ed.; World Health Organization: Geneva, Switzerland, 2014.
- Oliveira, O.; Gaio, R.; Correia-Neves, M.; Rito, T.; Duarte, R. Evaluation of drug-resistant tuberculosis treatment outcome in Portugal, 2000–2016. PLoS ONE 2021, 16, e0250028. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Dong, H.; Tan, Y.; Deng, Y.; Cai, X.; Jing, H. Rapid diagnosis of MDR and XDR tuberculosis with the MeltPro TB assay in China. Sci. Rep. 2016, 6, 25330. [Google Scholar] [CrossRef] [PubMed]
- Shibabaw, A.; Gelaw, B.; Gebreyes, W.; Robinson, R.; Wang, S.H.; Tessema, B. The burden of pre-extensively and extensively drug resistant tuberculosis among MDR-TB patients in the Amhara region, Ethiopia. PLoS ONE 2020, 15, e0229040. [Google Scholar] [CrossRef]
- Maningi, N.E.; Daum, L.T.; Rodriguez, J.D.; Said, H.M.; Peters, R.P.H.; Sekyere, J.O.; Fischer, G.W.; Chambers, J.P.; Fourie, P.B. Multi- and extensively drug-resistant Mycobacterium tuberculosis in South Africa: A molecular analysis of historical isolates. J. Clin. Microbiol. 2018, 56, 1214–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Gao, X.; Luo, T.; Wu, J.; Sun, G.; Liu, Q.; Jiang, Y.; Zhang, Y.; Mei, J.; Gao, Q. Association of gyrA/B mutations and resistance levels to fluoroquinolones in clinical isolates of Mycobacterium tuberculosis. Emerg. Microbes Infect. 2014, 3, e19. [Google Scholar] [CrossRef]
- Takiff, H.E.; Salazar, L.; Guerrero, C.; Philipp, W.; Huang, W.M.; Kreiswirth, B.; Cole, S.T.; Jacobs, W.R.; Telenti, A. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob. Agents Chemother. 1994, 38, 773–780. [Google Scholar] [CrossRef] [Green Version]
- Pitaksajjakul, P.; Wongwit, W.; Punprasit, W.; Eampokalap, B.; Peacock, S.; Ramasoota, P. Mutations in the gyrA and gyrB genes of fluoroquinolone-resistant Mycobacterium tuberculosis from TB patients in Thailand. Southeast Asian J. Trop. Med. Public Health 2005, 36, 228–237. [Google Scholar]
- Wang, J.Y.; Lee, L.N.; Lai, H.C.; Wang, S.K.; Jan, I.S.; Yu, C.J.; Hsueh, P.R.; Yang, P.C. Fluoroquinolone resistance in Mycobacterium tuberculosis isolates: Associated genetic mutations and relationship to antimicrobial exposure. J. Antimicrob. Chemother. 2007, 59, 860–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feuerriegel, S.; Cox, H.S.; Zarkua, N.; Karimovich, H.A.; Braker, K.; Ru sch-Gerdes, S.; Niemann, S. Sequence analyses of just four genes to detect extensively drug-resistant Mycobacterium tuberculosis strains in multidrug-resistant tuberculosis patients undergoing treatment. Antimicrob. Agents Chemother. 2009, 53, 3353–3356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saifullah, A.; Mallhi, T.H.; Khan, Y.H.; Iqbal, M.S.; Alotaibi, N.H.; Alzarea, A.I.; Rasheed, M. Evaluation of risk factorsassociated with the development of MDR- and XDR-TB in a tertiary care hospital: A retrospective cohort study. Peer J. 2021, 9, e10826. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yuan, Z.; Shen, X.; Wu, J.; Wu, Z.; Xu, B. Resistance to second-line antituberculosis drugs and delay in drug susceptibility testing among multidrug-resistant tuberculosis patients in Shanghai. BioMed Res. Int. 2016, 8, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.E.; Ershova, J.; Vlasova, N. Risk factors for acquisition of drug resistance during multidrug-resistant tuberculosis treatment, Arkhangelsk Oblast, Russia, 2005–2010. Emerg. Infect. Dis. 2015, 6, 1002–1011. [Google Scholar] [CrossRef] [Green Version]
- Mariam, E.H.; Jamal, E.B.; Jouda, B.; Mohammed, H.; Yahia, C.; Samir, A. Treatment outcomes of drug-resistant tuberculosis patients in Morocco: Multicentric prospective study. BMC Infect. Dis. 2019, 19, 316. [Google Scholar]
- Bhering, M.; Duarte, R.; Kritski, A. Predictive factors for unfavorable treatment in MDR-TB and XDR-TB patients in Rio de Janeiro State, Brazil, 2000–2016. PLoS ONE 2019, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alene, K.A.; Hengzhong, Y.; Kerri Viney Emma, S.M.; Kunyun, Y.; Liqiong, B.; Darren, J.G.; Archie, C.A.; Clements Zuhui, X. Treatment outcomes of patients with multidrug-resistant and extensively drug resistant tuberculosis in Hunan Province, China. BMC Infect. Dis. 2017, 17, 573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene Target | Number of Isolates | MTBDRsl | Codon/Mutation or Region | Resistant | Number (%) |
---|---|---|---|---|---|
with SRr/RRr Pattern | Probe | ||||
rpoB gene | |||||
True resistant (5) | |||||
H445Y | MUT3D | Asp94His (GAC→CAC) | Lfx,Mox | 1 (14.3%) | |
S450L | gyrB WT1 (ND) | 497–502 | Lfx,Mox(LL) | 1 (14.3%) | |
S450L, S315T1 | MUT2 | Ser91Pro (TCG→CCG) | Lfx,Mox(LL) | 1 (14.3%) | |
H445D, S315T1 | MUT3D | Asp94His (GAC→CAC) | Lfx,Mox | 1 (14.3%) | |
H445D,S315T1 | MUT1 | Ala90Val (GCG→GTG) | Lfx,Mox(LL) | 1 (14.3%) | |
Inferred (2) | |||||
432–438,315 | gyrB WT1 (ND) | 497–502 | Lfx,Mox(LL) | 1 (14.3%) | |
445–448, c-15t | MUT1 | Ala90Vla (GCG→GTG) | Lfx,Mox(LL),Km,Am,Cm, | 1 (14.3%) | |
MUT2 | Ser91Pro (TCG→CCG) | ||||
rrsMUT1 | a1401g |
Gene Target | Number of Isolates | MTBDRsl | Codon/Mutation or Region | Resistant | Number (%) |
---|---|---|---|---|---|
With Hr Pattern | Probe | ||||
KatG gene | |||||
Heteroresistant (2) | |||||
WT1 (D) + S315T1 | gyrA WT1 (ND) | 85–90 | Lfx,Mox(LL) | 1 (11.1) | |
gyrB WT1 (ND) | 497–502 | Lfx,Mox(LL) | 1 (11.1) | ||
True resistant (4) | |||||
S315T1 | gyrB WT1 (ND) | 497–502 | Lfx,Mox(LL) | 3 (33.3) | |
S315T2 | gyrB WT1 (ND) | 497–502 | Lfx,Mox(LL) | 1 (11.1) | |
inhA gene | |||||
True resistant (2) | |||||
c-15t | MUT2 (gyrA) | Ser91Pro (TCG→CCG) | Lfx,Mox(LL) | 1 (11.1) | |
MUT2 (rrs) | g1484t | Am,Km,Cm | 1 (11.1) | ||
Inferred resistant (1) | |||||
WT1 ND | gyrB WT1 (ND) | 497–502 | Lfx,Mox(LL) | 1 (11.1) |
Characteristics | Number (%) of | Number (%) of Isolates | RR (95% CI) | Increased Risk (%) | |
---|---|---|---|---|---|
Isolates (n = 51) | Resistant | Susceptible | |||
Total | 51 (100%) | 7 (13.73%) | 44 (86.27%) | ||
Sex | |||||
Male | 39 (76.47%) | 6 (11.76%) | 33 (64.71%) | 1.85 (0.2459, 13.8578) | 84.62% |
Female | 12 (23.53%) | 1 (01.96%) | 11 (21.57%) | ||
Age | |||||
≤15 | 0 | 0 | 0 | ||
16–60 | 47 (92.2%) | 06 (11.76%) | 41 (80.3%) | 0.51 (0.0799, 3.2627) | |
≥61 | 04 (07.84%) | 01 (1.96%) | 03 (05.88%) | 1.96 (0.3065, 12.5127) | 95.83% |
District | |||||
Urban | 38 (74.5%) | 5 (9.8%) | 33 (64.7%) | 0.86 (0.1882, 3.8875) | |
Rural | 13 (25.5%) | 2 (3.9%) | 11 (21.6%) | ||
Treatment history | |||||
New | 12 (23.5%) | 2 (3.9%) | 10 (19.6%) | 1.3 (0.2881, 5.866) | 30% |
Treated cases | 39 (76.5%) | 5 (9.8%) | 34 (66.7%) | ||
HIV | |||||
Positive | 0 | 0 | 0 | ||
Negative | 51 (100%) | 7 (13.73%) | 44 (86.27%) | ||
Diabetics | |||||
Yes | 7 (13.7%) | 1 (1.9%) | 06 (11.8%) | 1.05 (0.1474, 7.4453) | 4.76% |
No | 44 (86.3%) | 6 (11.8%) | 38 (74.5%) | ||
Treatment outcomes | |||||
Successful treatment | |||||
(Cure+ treatment completed) | 36 (70.6%) | 3 (5.9%) | 33 (64.7%) | 0.31 (0.0794, 1.2303) | |
Poor treatment | |||||
(Failure + death + Lost to follow-up) | 15 (29.4%) | 4 (7.84%) | 11 (21.57%) | 3.2 (0.8128, 12.5987) | 220% |
Characteristics | Number (%) of | Number (%) of Isolates | RR (96% CI) | Increased Risk (%) | |
---|---|---|---|---|---|
Isolates (n = 200) | Resistant | Susceptible | |||
Total | 200 (100%) | 09 (04.5%) | 191 (95.5%) | ||
Sex | |||||
Male | 146 (73.0%) | 05 (2.5%) | 141 (70.5%) | 0.46 (0.1289, 1.6582) | |
Female | 054 (27.0%) | 04 (2.0%) | 050 (25.0%) | ||
Age | |||||
≤15 | 03 (1.5%) | 0 | 03 (1.5%) | ||
16–60 | 158 (79.0%) | 07 (3.5%) | 151 (75.5%) | 1.86 (0.2354, 14.7096) | 86.08% |
≥61 | 39 (19.5%) | 02 (1.0%) | 37 (23.5%) | 1.18 (0.2549, 5.4584) | 17.95% |
District | |||||
Urban | 189 (94.5%) | 9 (4.5%) | 180 (90.0%) | ||
Rural | 11 (5.5%) | 0 | 11 (5.5) | ||
Treatment history | |||||
New | 18 (9.0%) | 3 (1.5%) | 15 (7.5) | 5.06 (1.3798, 18.5237) | 405.56% |
Treated cases | 182 (91.0%) | 6 (3.0%) | 176 (88.0%) | ||
HIV | |||||
Positive | 7 (3.5%) | 0 | 7 (3.5%) | ||
Negative | 193 (96.5%) | 9 (4.5%) | 184 (82.0%) | ||
Diabetics | |||||
Yes | 36 (18.0%) | 0 | 36 (18.0%) | ||
No | 164 (82.0%) | 9 (4.5%) | 155 (77.5%) | ||
Treatment outcome | |||||
Successful treatment (Cure + completed) | 171 (85.5%) | 8 (4.0%) | 163 (81.5%) | 1.36 (0.1762, 10.4475) | 35.67% |
Poor treatment | |||||
(Failure + death + Lost to follow-up) | 29 (14.5%) | 1 (0.5%) | 28 (14.0%) | 0.57 (0.0735, 4.4117) |
Characteristics | Number (%) of | Number (%) of Isolates | RR (95% CI) | Increased Risk (%) | |
---|---|---|---|---|---|
Isolates (n = 251) | Resistant | Susceptible | |||
Total | 251 (100%) | 16 (6.4%) | 235 (93.6%) | ||
Treatment outcome | 207 (82.5%) | 11 (4.4%) | 196 (78.1%) | 0.47 (0.1710, 1.2786) | |
Cure | 156 (62.2%) | 9 (3.6%) | 147 (58.6%) | 1.47 (0.3285, 6.5882) | 47.12% |
Treatment completed | 51 (20.3%) | 2 (0.8%) | 49 (19.5%) | 0.68 (0.1518, 3.0440) | |
Poor unfavorable treatment | 44 (17.5%) | 5 (2.0%) | 39 (15.5%) | 2.14 (0.7821, 5.8468) | 113.84% |
Failure | 12 (4.8%) | 2 (0.8%) | 10 (4.0%) | 1.78 (0.3375, 9.3655) | 77.78% |
Death | 11 (4.4%) | 1 (0.4%) | 10 (4.0%) | 0.75 (0.0935, 6.0177) | |
Lost to follow-up | 21 (8.4%) | 2 (0.8%) | 19 (7.6%) | 0.73 (0.1349, 3.9515) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aaina, M.; Venkatesh, K.; Usharani, B.; Anbazhagi, M.; Rakesh, G.; Muthuraj, M. Risk Factors and Treatment Outcome Analysis Associated with Second-Line Drug-Resistant Tuberculosis. J. Respir. 2022, 2, 1-12. https://doi.org/10.3390/jor2010001
Aaina M, Venkatesh K, Usharani B, Anbazhagi M, Rakesh G, Muthuraj M. Risk Factors and Treatment Outcome Analysis Associated with Second-Line Drug-Resistant Tuberculosis. Journal of Respiration. 2022; 2(1):1-12. https://doi.org/10.3390/jor2010001
Chicago/Turabian StyleAaina, Muralidhar, Kaliyaperumal Venkatesh, Brammacharry Usharani, Muthukumar Anbazhagi, Gerard Rakesh, and Muthaiah Muthuraj. 2022. "Risk Factors and Treatment Outcome Analysis Associated with Second-Line Drug-Resistant Tuberculosis" Journal of Respiration 2, no. 1: 1-12. https://doi.org/10.3390/jor2010001
APA StyleAaina, M., Venkatesh, K., Usharani, B., Anbazhagi, M., Rakesh, G., & Muthuraj, M. (2022). Risk Factors and Treatment Outcome Analysis Associated with Second-Line Drug-Resistant Tuberculosis. Journal of Respiration, 2(1), 1-12. https://doi.org/10.3390/jor2010001