Drug Regimen for Patients after a Pneumonectomy
Abstract
:1. Introduction
2. Drug Regimen after a Pneumonectomy
2.1. Non-Small Cell Lung Cancer
2.2. Malignant Pleural Mesothelioma
2.3. Tuberculosis
2.4. Respiratory Health
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, C.; Wang, R.; Pan, X.; Huang, Q.; Luo, J.; Zheng, J.; Wang, Y.; Shi, J.; Chen, H. Comprehensive study of prognostic risk factors of patients underwent pneumonectomy. J. Cancer 2017, 8, 2097–2103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dogru, M.V.; Sezen, C.B.; Aker, C.; Girgin, O.; Kilimci, U.; Erduhan, S.; Metin, M. Evaluation of factors affecting morbidity and mortality in pneumonectomy patients. Acta Chir. Belg. 2020, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rivera, C.; Arame, A.; Pricopi, C.; Riquet, M.; Mangiameli, G.; Abdennadher, M.; Dahan, M.; Barthes, F.L.P. Pneumonectomy for benign disease: Indications and postoperative outcomes, a nationwide study. Eur. J. Cardio Thorac. Surg. 2015, 48, 435–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolz, A.J.; Harustiak, T.; Simonek, J.; Schutzner, J.; Lischke, R. Pneumonectomy for non-small cell lung cancer: Predictors of early mortality and morbidity. Acta Chir. Belg. 2014, 114, 25–30. [Google Scholar] [CrossRef]
- Yang, C.-F.J.; Shah, S.A.; Lin, B.K.; VanDusen, K.W.; Chan, D.Y.; Tan, W.D.; Ranney, D.N.; Cox, M.L.; D’Amico, T.A.; Berry, M.F. Right-Sided Versus Left-Sided Pneumonectomy After Induction Therapy for Non-Small Cell Lung Cancer. Ann. Thorac. Surg. 2019, 107, 1074–1081. [Google Scholar] [CrossRef]
- Darling, G.E.; Abdurahman, A.; Yi, Q.-L.; Johnston, M.; Waddell, T.K.; Pierre, A.; Keshavjee, S.; Ginsberg, R. Risk of a Right Pneumonectomy: Role of Bronchopleural Fistula. Ann. Thorac. Surg. 2005, 79, 433–437. [Google Scholar] [CrossRef]
- Rakovich, G.; Bussieres, J.; Fréchette, E. Postpneumonectomy syndrome. Multimed. Man. Cardio Thorac. Surg. 2009, 2009. [Google Scholar] [CrossRef]
- Shen, K.R.; Wain, J.C.; Wright, C.D.; Grillo, H.C.; Mathisen, D.J. Postpneumonectomy syndrome: Surgical management and long-term results. J. Thorac. Cardiovasc. Surg. 2008, 135, 1210–1219. [Google Scholar] [CrossRef] [Green Version]
- Soll, C.; Hahnloser, D.; Frauenfelder, T.; Russi, E.W.; Weder, W.; Kestenholz, P.B. The postpneumonectomy syndrome: Clinical presentation and treatment. Eur. J. Cardio-Thorac. Surg. 2009, 35, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Shiraishi, Y.; Nakajima, Y.; Katsuragi, N.; Kurai, M.; Takahashi, N. Resectional surgery combined with chemotherapy remains the treatment of choice for multidrug-resistant tuberculosis. J. Thorac. Cardiovasc. Surg. 2004, 128, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Mohsen, T.; Zeid, A.A.; Haj-Yahia, S. Lobectomy or pneumonectomy for multidrug-resistant pulmonary tuberculosis can be performed with acceptable morbidity and mortality: A seven-year review of a single institution’s experience. J. Thorac. Cardiovasc. Surg. 2007, 134, 194–198. [Google Scholar] [CrossRef] [Green Version]
- Byun, C.S.; Chung, K.Y.; Narm, K.S.; Lee, J.G.; Hong, D.; Lee, C.Y. Early and Long-term Outcomes of Pneumonectomy for Treating Sequelae of Pulmonary Tuberculosis. Korean J. Thorac. Cardiovasc. Surg. 2012, 45, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.T.; Kim, H.K.; Sung, S.-W.; Kim, J.H. Long-term outcomes and risk factor analysis after pneumonectomy for active and sequela forms of pulmonary tuberculosis. Eur. J. Cardio Thorac. Surg. 2003, 23, 833–839. [Google Scholar] [CrossRef] [Green Version]
- Matsushima, K.; Aiolfi, A.; Park, C.; Rosen, D.; Strumwasser, A.; Benjamin, E.; Inaba, K.; Demetriades, D. Surgical outcomes after trauma pneumonectomy. J. Trauma Acute Care Surg. 2017, 82, 927–932. [Google Scholar] [CrossRef]
- Martin, M.J.; McDonald, J.M.; Mullenix, P.S.; Steele, S.R.; Demetriades, D. Operative Management and Outcomes of Traumatic Lung Resection. J. Am. Coll. Surg. 2006, 203, 336–344. [Google Scholar] [CrossRef]
- Phillips, B.; Turco, L.; Mirzaie, M.; Fernandez, C. Trauma pneumonectomy: A narrative review. Int. J. Surg. 2017, 46, 71–74. [Google Scholar] [CrossRef]
- Lubitz, A.L.; Sjoholm, L.O.; Goldberg, A.; Pathak, A.; Santora, T.; Sharp, T.E.; Wallner, M.; Berretta, R.M.; Poole, L.A.; Wu, J.; et al. Acute right heart failure after hemorrhagic shock and trauma pneumonectomy—A management approach. J. Trauma Acute Care Surg. 2017, 82, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Chen, W.; Xia, M.; Liu, H.; Liu, Y.; Inci, I.; Davoli, F.; Waseda, R.; Filosso, P.L.; White, A. Sleeve lobectomy compared with pneumonectomy for operable centrally located non-small cell lung cancer: A meta-analysis. Transl. Lung Cancer Res. 2019, 8, 775–786. [Google Scholar] [CrossRef]
- Kim, Y.T.; Kang, C.H.; Sung, S.W.; Kim, J.H. Local Control of Disease Related to Lymph Node Involvement in Non-Small Cell Lung Cancer After Sleeve Lobectomy Compared with Pneumonectomy. Ann. Thorac. Surg. 2005, 79, 1153–1161. [Google Scholar] [CrossRef]
- Siripurapu, V.; Stitzenberg, K.B.; Nitzkorski, J.; Lebenthal, A.; Scott, W.J. Pneumonectomy for Cancer in the Mid-Atlantic US: Trends and Outcomes over a Decade. Chest 2010, 138, 659A. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Wang, G.; Liu, L.; Zhang, J.; Li, S. The analysis of prognosis factor in patients with non-small cell lung cancer receiving pneumonectomy. J. Thorac. Dis. 2020, 12, 1366–1373. [Google Scholar] [CrossRef]
- Ilonen, I.K.; Räsänen, J.V.; Sihvo, E.I.; Knuuttila, A.; Sovijärvi, A.R.; Sintonen, H.; Salo, J.A. Pneumonectomy: Post-operative quality of life and lung function. Lung Cancer 2007, 58, 397–402. [Google Scholar] [CrossRef]
- Kris, M.G.; Gaspar, L.E.; Chaft, J.E.; Kennedy, E.B.; Azzoli, C.G.; Ellis, P.M.; Lin, S.H.; Pass, H.I.; Seth, R.; Shepherd, F.A.; et al. Adjuvant Systemic Therapy and Adjuvant Radiation Therapy for Stages I to IIIA Resectable Non–Small-Cell Lung Cancers: American Society of Clinical Oncology/Cancer Care Ontario Clinical Practice Guideline Update Summary. J. Clin. Oncol. 2017, 35, 2960–2974. [Google Scholar] [CrossRef] [Green Version]
- Roselli, M.; Mariotti, S.; Ferroni, P.; Laudisi, A.; Mineo, D.; Pompeo, E.; Ambrogi, V.; Mineo, T.C. Postsurgical chemotherapy in stage IB nonsmall cell lung cancer: Long-term survival in a randomized study. Int. J. Cancer 2006, 119, 955–960. [Google Scholar] [CrossRef] [Green Version]
- Mineo, T.C.; Ambrogi, V.; Corsaro, V.; Roselli, M. Postoperative adjuvant therapy for stage IB non-small-cell lung cancer. Eur. J. Cardio Thorac. Surg. 2001, 20, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.J.; Cho, S.; Kim, K.; Jheon, S.; Yang, H.C.; Kim, D.K. Effect of Adjuvant Chemotherapy after Complete Resection for Pathologic Stage IB Lung Adenocarcinoma in High-Risk Patients as Defined by a New Recurrence Risk Scoring Model. Cancer Res. Treat. 2017, 49, 898–905. [Google Scholar] [CrossRef]
- Dediu, M.; Ion, O.; Ion, R.; Alexandru, A.; Median, D.; Gal, C.; Horvat, T.; Motas, C.; Motas, N. Impact of adjuvant chemotherapy in stage IB non-small-cell lung cancer: An analysis of 112 consecutively treated patients. JBUON J. Balk. Union Oncol. 2012, 17, 317–322. [Google Scholar]
- Park, S.Y.; Lee, J.G.; Kim, J.; Byun, G.E.; Bae, M.K.; Lee, C.Y.; Kim, D.J.; Chung, K.Y. Efficacy of platinum-based adjuvant chemotherapy in T2aN0 stage IB non-small cell lung cancer. J. Cardiothorac. Surg. 2013, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Yang, G.; Tian, Y.; Tian, D. Comparing the benefits of postoperative adjuvant chemotherapy vs. observation for stage IB non-small cell lung cancer: A meta-analysis. J. Thorac. Dis. 2019, 11, 3047–3054. [Google Scholar] [CrossRef]
- Arriagada, R.; Auperin, A.; Burdett, S.; Higgins, J.; Johnson, D.; Le Chevalier, T.; Le Pechoux, C.; Mineo, T.; Parmar, M.; Pignon, J.; et al. Adjuvant chemotherapy, with or without postoperative radiotherapy, in operable non-small-cell lung cancer: Two meta-analyses of individual patient data. Lancet 2010, 375, 1267–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, M.K. Adjuvant chemotherapy benefits older and younger non-small cell lung cancer patients alike. CA Cancer J. Clin. 2012, 62, 279–280. [Google Scholar] [CrossRef] [PubMed]
- Batum, Ö.; Anar, C.; Özdoğan, Y.; Ermin, S.; Yılmaz, U. Use of adjuvant chemotherapy for nonsmall cell lung cancer: Is advanced age a prognostic factor? Indian J. Cancer 2018, 55, 282. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhao, J.; Su, Y.-J.; Zhao, X.-L.; Wang, C.-L. Role of adjuvant chemotherapy after pneumonectomy for non-small cell lung cancer. Oncol. Lett. 2012, 4, 1349–1353. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, S.; Yamazaki, K.; Mori, R.; Katsura, M.; Kouso, H.; Kawano, D.; Ushijima, C.; Takeo, S. Feasibility Study for Biweekly Administration of Cisplatin plus Vinorelbine as Adjuvant-Chemotherapy for Completely Resected Non-Small Cell Lung Cancer Patients in a Japanese Population. Adv. Lung Cancer 2014, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hirai, F.; Seto, T.; Shimokawa, M.; Inamasu, E.; Toyozawa, R.; Toyokawa, G.; Yoshida, T.; Shiraishi, Y.; Takenaka, T.; Yamaguchi, M.; et al. Split-dose cisplatin and vinorelbine as adjuvant chemotherapy for completely resected non-small cell lung cancer. Anticancer. Res. 2014, 34, 927–931. [Google Scholar]
- Novello, S. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors As Adjuvant Therapy in Completely Resected Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2015, 33, 3985–3986. [Google Scholar] [CrossRef]
- Kelly, K.; Altorki, N.K.; Eberhardt, W.E.E.; O’Brien, M.E.; Spigel, D.R.; Crinò, L.; Tsai, C.-M.; Kim, J.-H.; Cho, E.K.; Hoffman, P.C.; et al. Adjuvant Erlotinib Versus Placebo in Patients With Stage IB-IIIA Non–Small-Cell Lung Cancer (RADIANT): A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2015, 33, 4007–4014. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Zhong, W.; Wang, Q.; Xu, S.-T.; Mao, W.-M.; Wu, L.; Shen, Y.; Liu, Y.-Y.; Chen, C.; Cheng, Y.; et al. Gefitinib (G) versus vinorelbine+cisplatin (VP) as adjuvant treatment in stage II-IIIA (N1-N2) non-small-cell lung cancer (NSCLC) with EGFR-activating mutation (ADJUVANT): A randomized, Phase III trial (CTONG 1104). J. Clin. Oncol. 2017, 35, 8500. [Google Scholar] [CrossRef]
- Lu, D.; Wang, Z.; Liu, X.; Feng, S.; Dong, X.; Shi, X.; Wang, H.; Wu, H.; Xiong, G.; Wang, H.; et al. Differential effects of adjuvant EGFR tyrosine kinase inhibitors in patients with different stages of non-small-cell lung cancer after radical resection: An updated meta-analysis. Cancer Manag. Res. 2019, 11, 2677–2690. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-L.; Tsuboi, M.; He, J.; John, T.; Grohe, C.; Majem, M.; Goldman, J.W.; Laktionov, K.; Kim, S.-W.; Kato, T.; et al. Osimertinib in Resected EGFR-Mutated Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 1711–1723. [Google Scholar] [CrossRef]
- Raphael, J.; Vincent, M.; Boldt, G.; Shah, P.S.; Rodrigues, G.; Blanchette, P. Adjuvant Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors (TKIs) in Resected Non–Small Cell Lung Cancer (NSCLC). Am. J. Clin. Oncol. 2019, 42, 440–445. [Google Scholar] [CrossRef]
- Huynh, C.; Walsh, L.A.; Spicer, J.D. Surgery after neoadjuvant immunotherapy in patients with resectable non-small cell lung cancer. Transl. Lung Cancer Res. 2021, 10, 563–580. [Google Scholar] [CrossRef]
- Brito, A.B.C.; Camandaroba, M.P.G.; de Lima, V.C.C. Anti-PD1 versus anti-PD-L1 immunotherapy in first-line therapy for advanced non-small cell lung cancer: A systematic review and meta-analysis. Thorac. Cancer 2021, 12, 1058–1066. [Google Scholar] [CrossRef]
- Robinson, C.G.; Patel, A.; Bradley, J.D.; Waqar, S.N.; Morgensztern, D.; Baggstrom, M.Q.; Govindan, R.; Bell, J.; Guthrie, T.; Colditz, G.A.; et al. Postoperative radiotherapy (PORT) for pathologic N2 non-small cell lung cancer (NSCLC) treated with adjuvant chemotherapy: A review of the National Cancer Database. J. Clin. Oncol. 2014, 32, 7509. [Google Scholar] [CrossRef]
- Zeng, W.-Q.; Feng, W.; Xie, L.; Zhang, C.-C.; Yu, W.; Cai, X.-W.; Fu, X.-L. Postoperative Radiotherapy for Resected Stage IIIA-N2 Non-small-cell Lung Cancer: A Population-Based Time-Trend Study. Lung 2019, 197, 741–751. [Google Scholar] [CrossRef]
- Corso, C.D.; Rutter, C.E.; Wilson, L.D.; Kim, A.W.; Decker, R.H.; Husain, Z.A. Re-evaluation of the Role of Postoperative Radiotherapy and the Impact of Radiation Dose for Non–Small-Cell Lung Cancer Using the National Cancer Database. J. Thorac. Oncol. 2015, 10, 148–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Men, Y.; Wang, J.; Zhou, Z.; Chen, D.; Xiao, Z.; Feng, Q.; Lv, J.; Liang, J.; Bi, N.; et al. Postoperative radiotherapy is effective in improving survival of patients with stage pIII-N2 non-small-cell lung Cancer after pneumonectomy. BMC Cancer 2019, 19, 478. [Google Scholar] [CrossRef] [Green Version]
- Pöttgen, C.; Abu Jawad, J.; Gkika, E.; Freitag, L.; Lübcke, W.; Welter, S.; Gauler, T.; Schuler, M.; Eberhardt, W.E.E.; Stamatis, G.; et al. Accelerated radiotherapy and concurrent chemotherapy for patients with contralateral central or mediastinal lung cancer relapse after pneumonectomy. J. Thorac. Dis. 2015, 7, 264–272. [Google Scholar]
- Ayub, A.; Rehmani, S.; Al-Ayoubi, A.M.; Lewis, E.; Santana-Rodríguez, N.; Clavo, B.; Raad, W.; Bhora, F.Y. Radiation therapy improves survival for unresectable postpneumonectomy lung tumors. J. Surg. Res. 2018, 227, 60–66. [Google Scholar] [CrossRef]
- Testolin, A.; Favretto, M.S.; Cora, S.; Cavedon, C. Stereotactic body radiation therapy for a new lung cancer arising after pneumonectomy: Dosimetric evaluation and pulmonary toxicity. Br. J. Radiol. 2015, 88, 20150228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, R.; Giuliani, M.; Yap, M.L.; Atallah, S.; Le, L.W.; Sun, A.; Brade, A.; Cho, B.J.; Bezjak, A.; Hope, A. Stereotactic Body Radiotherapy in Patients with Previous Pneumonectomy: Safety and Efficacy. J. Thorac. Oncol. 2014, 9, 843–847. [Google Scholar] [CrossRef] [Green Version]
- Levra, N.G.; Filippi, A.R.; Guarneri, A.; Badellino, S.; Mantovani, C.; Ruffini, E.; Ricardi, U. Efficacy and Safety of Stereotactic Ablative Radiotherapy in Patients with Previous Pneumonectomy. Tumori J. 2015, 101, 148–153. [Google Scholar] [CrossRef]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. SEER Cancer Statistics Review, 1975–2017; National Cancer Institute: Bethesda, MD, USA, April 2020. Available online: https://seer.cancer.gov/csr/1975_2017/ (accessed on 20 July 2020).
- Filosso, P.L.; Guerrera, F.; Lausi, P.O.; Giobbe, R.; Lyberis, P.; Ruffini, E.; Oliaro, A. Pleurectomy/decortication versus extrapleural pneumonectomy: A critical choice. J. Thorac. Dis. 2018, 10, S390–S394. [Google Scholar] [CrossRef] [Green Version]
- Magouliotis, D.E.; Tasiopoulou, V.S.; Athanassiadi, K. Updated meta-analysis of survival after extrapleural pneumonectomy versus pleurectomy/decortication in mesothelioma. Gen. Thorac. Cardiovasc. Surg. 2018, 67, 312–320. [Google Scholar] [CrossRef]
- Opitz, I.; Weder, W. A nuanced view of extrapleural pneumonectomy for malignant pleural mesothelioma. Ann. Transl. Med. 2017, 5, 237. [Google Scholar] [CrossRef] [Green Version]
- Marulli, G.; Faccioli, E.; Bellini, A.; Mammana, M.; Rea, F. Induction chemotherapy vs post-operative adjuvant therapy for malignant pleural mesothelioma. Expert Rev. Respir. Med. 2017, 11, 649–660. [Google Scholar] [CrossRef]
- Cao, C.; Tian, D.; Manganas, C.; Matthews, P.; Yan, T.D. Systematic review of trimodality therapy for patients with malignant pleural mesothelioma. Ann. Cardiothorac. Surg. 2012, 1, 428–437. [Google Scholar] [CrossRef]
- Takigawa, N.; Kiura, K.; Kishimoto, T. Medical Treatment of Mesothelioma: Anything New? Curr. Oncol. Rep. 2011, 13, 265–271. [Google Scholar] [CrossRef]
- Tsao, A.S.; Wistuba, I.; Roth, J.A.; Kindler, H.L. Malignant Pleural Mesothelioma. J. Clin. Oncol. 2009, 27, 2081–2090. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, M.R.; Neal, J.W. Novel systemic therapy against malignant pleural mesothelioma. Transl. Lung Cancer Res. 2017, 6, 295–314. [Google Scholar] [CrossRef] [Green Version]
- Ambrogi, V.; Baldi, A.; Schillaci, O.; Mineo, T.C. Clinical Impact of Extrapleural Pneumonectomy for Malignant Pleural Mesothelioma. Ann. Surg. Oncol. 2011, 19, 1692–1699. [Google Scholar] [CrossRef]
- Batirel, H.F.; Metintas, M.; Caglar, H.B.; Yildizeli, B.; Lacin, T.; Bostanci, K.; Akgul, A.G.; Evman, S.; Yuksel, M. Trimodality Treatment of Malignant Pleural Mesothelioma. J. Thorac. Oncol. 2008, 3, 499–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.E.; Pace, M.B.; Daniels, L.M.; Raasch, R.H.; Corbett, A.H. Malignant pleural mesothelioma. Am. J. Health Pharm. 2012, 69, 377–385. [Google Scholar] [CrossRef]
- Patel, P.R.; Yoo, S.; Broadwater, G.; Marks, L.B.; Miles, E.F.; D’Amico, T.A.; Harpole, D.; Kelsey, C.R. Effect of Increasing Experience on Dosimetric and Clinical Outcomes in the Management of Malignant Pleural Mesothelioma With Intensity-Modulated Radiation Therapy. Int. J. Radiat. Oncol. 2012, 83, 362–368. [Google Scholar] [CrossRef]
- Tonoli, S.; Vitali, P.; Scotti, V.; Bertoni, F.; Spiazzi, L.; Ghedi, B.; Buonamici, F.B.; Marrazzo, L.; Guidi, G.; Meattini, I.; et al. Adjuvant radiotherapy after extrapleural pneumonectomy for mesothelioma. Prospective analysis of a multi-institutional series. Radiother. Oncol. 2011, 101, 311–315. [Google Scholar] [CrossRef]
- Luckraz, H.; Rahman, M.; Patel, N.; Szafranek, A.; Gibbs, A.R.; Butchart, E.G. Three decades of experience in the surgical multi-modality management of pleural mesothelioma. Eur. J. Cardio-Thorac. Surg. 2010, 37, 552–556. [Google Scholar] [CrossRef] [Green Version]
- Garland, L.L.; Rankin, C.; Gandara, D.R.; Rivkin, S.E.; Scott, K.M.; Nagle, R.B.; Klein-Szanto, A.J.; Testa, J.R.; Altomare, D.A.; Borden, E.C. Phase II Study of Erlotinib in Patients With Malignant Pleural Mesothelioma: A Southwest Oncology Group Study. J. Clin. Oncol. 2007, 25, 2406–2413. [Google Scholar] [CrossRef]
- Govindan, R.; Kratzke, R.A.; Herndon, J.E.; Niehans, G.A.; Vollmer, R.; Watson, D.; Green, M.R.; Kindler, H.L. Gefitinib in Patients with Malignant Mesothelioma: A Phase II Study by the Cancer and Leukemia Group B. Clin. Cancer Res. 2005, 11, 2300–2304. [Google Scholar] [CrossRef] [Green Version]
- Jackman, D.M.; Kindler, H.L.; Yeap, B.Y.; Fidias, P.; Salgia, R.; Lucca, J.; Morse, L.K.; Ostler, P.A.; Johnson, B.E.; Jänne, P.A. Erlotinib plus bevacizumab in previously treated patients with malignant pleural mesothelioma. Cancer 2008, 113, 808–814. [Google Scholar] [CrossRef]
- Porta, C.; Mutti, L.; Tassi, G. Negative results of an Italian Group for Mesothelioma (G.I.Me.) pilot study of single-agent imatinib mesylate in malignant pleural mesothelioma. Cancer Chemother. Pharmacol. 2006, 59, 149–150. [Google Scholar] [CrossRef] [PubMed]
- Dudek, A.Z.; Pang, H.; Kratzke, R.A.; Otterson, G.A.; Hodgson, L.; Vokes, E.E.; Kindler, H.L. Phase II Study of Dasatinib in Patients with Previously Treated Malignant Mesothelioma (Cancer and Leukemia Group B 30601): A Brief Report. J. Thorac. Oncol. 2012, 7, 755–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zalcman, G.; Mazieres, J.; Margery, J.; Greillier, L.; Audigier-Valette, C.; Moro-Sibilot, D.; Molinier, O.; Corre, R.; Monnet, I.; Gounant, V.; et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): A randomised, controlled, open-label, phase 3 trial. Lancet 2016, 387, 1405–1414. [Google Scholar] [CrossRef]
- Grosso, F.; Steele, N.; Novello, S.; Nowak, A.K.; Popat, S.; Greillier, L.; John, T.; Leighl, N.B.; Reck, M.; Taylor, P.; et al. Nintedanib Plus Pemetrexed/Cisplatin in Patients With Malignant Pleural Mesothelioma: Phase II Results From the Randomized, Placebo-Controlled LUME-Meso Trial. J. Clin. Oncol. 2017, 35, 3591–3600. [Google Scholar] [CrossRef]
- Scagliotti, G.V.; Gaafar, R.; Nowak, A.K.; Nakano, T.; van Meerbeeck, J.; Popat, S.; Vogelzang, N.J.; Grosso, F.; Aboelhassan, R.; Jakopovic, M.; et al. Nintedanib in combination with pemetrexed and cisplatin for chemotherapy-naive patients with advanced malignant pleural mesothelioma (LUME-Meso): A double-blind, randomised, placebo-controlled phase 3 trial. Lancet Respir. Med. 2019, 7, 569–580. [Google Scholar] [CrossRef]
- Tsao, A.S.; Miao, J.; Wistuba, I.I.; Vogelzang, N.J.; Heymach, J.V.; Fossella, F.V.; Lu, C.; Velasco, M.R.; Box-Noriega, B.; Hueftle, J.G.; et al. Phase II Trial of Cediranib in Combination With Cisplatin and Pemetrexed in Chemotherapy-Naïve Patients With Unresectable Malignant Pleural Mesothelioma (SWOG S0905). J. Clin. Oncol. 2019, 37, 2537–2547. [Google Scholar] [CrossRef] [Green Version]
- Alley, E.W.; Lopez, J.; Santoro, A.; Morosky, A.; Saraf, S.; Piperdi, B.; van Brummelen, E. Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma (KEYNOTE-028): Preliminary results from a non-randomised, open-label, phase 1b trial. Lancet Oncol. 2017, 18, 623–630. [Google Scholar] [CrossRef]
- Metaxas, Y.; Rivalland, G.; Mauti, L.A.; Klingbiel, D.; Kao, S.; Schmid, S.; Nowak, A.K.; Gautschi, O.; Bartnick, T.; Hughes, B.G.; et al. Pembrolizumab as Palliative Immunotherapy in Malignant Pleural Mesothelioma. J. Thorac. Oncol. 2018, 13, 1784–1791. [Google Scholar] [CrossRef] [Green Version]
- Okada, M.; Kijima, T.; Aoe, K.; Kato, T.; Fujimoto, N.; Nakagawa, K.; Takeda, Y.; Hida, T.; Kanai, K.; Imamura, F.; et al. Clinical Efficacy and Safety of Nivolumab: Results of a Multicenter, Open-label, Single-arm, Japanese Phase II study in Malignant Pleural Mesothelioma (MERIT). Clin. Cancer Res. 2019, 25, 5485–5492. [Google Scholar] [CrossRef] [Green Version]
- Quispel-Janssen, J.; van der Noort, V.; de Vries, J.F.; Zimmerman, M.; Lalezari, F.; Thunnissen, E.; Monkhorst, K.; Schouten, R.; Schunselaar, L.; Disselhorst, M.; et al. Programmed Death 1 Blockade With Nivolumab in Patients With Recurrent Malignant Pleural Mesothelioma. J. Thorac. Oncol. 2018, 13, 1569–1576. [Google Scholar] [CrossRef] [Green Version]
- Hassan, R.; Thomas, A.; Nemunaitis, J.J.; Patel, M.R.; Bennouna, J.; Chen, F.L.; Delord, J.-P.; Dowlati, A.; Kochuparambil, S.T.; Taylor, M.H.; et al. Efficacy and safety of avelumab treatment in patients with advanced unresectable mesothelioma: Phase 1b results from the JAVELIN solid tumor trial. JAMA Oncol. 2019, 5, 351–357. [Google Scholar] [CrossRef]
- Popat, S.; Curioni-Fontecedro, A.; Dafni, U.; Shah, R.; O’Brien, M.; Pope, A.; Fisher, P.; Spicer, J.; Roy, A.; Gilligan, D.; et al. A multicentre randomised phase III trial comparing pembrolizumab versus single-agent chemotherapy for advanced pre-treated malignant pleural mesothelioma: The European Thoracic Oncology Platform (ETOP 9-15) PROMISE-meso trial. Ann. Oncol. 2020, 31, 1734–1745. [Google Scholar] [CrossRef]
- Disselhorst, M.J.; Quispel-Janssen, J.; Lalezari, F.; Monkhorst, K.; de Vries, J.F.; van der Noort, V.; Harms, E.; Burgers, S.; Baas, P. Ipilimumab and nivolumab in the treatment of recurrent malignant pleural mesothelioma (INITIATE): Results of a prospective, single-arm, phase 2 trial. Lancet Respir. Med. 2019, 7, 260–270. [Google Scholar] [CrossRef]
- Scherpereel, A.; Mazieres, J.; Greillier, L.; Lantuejoul, S.; Dô, P.; Bylicki, O.; Monnet, I.; Corre, R.; Audigier-Valette, C.; Locatelli-Sanchez, M.; et al. Nivolumab or nivolumab plus ipilimumab in patients with relapsed malignant pleural mesothelioma (IFCT-1501 MAPS2): A multicentre, open-label, randomised, non-comparative, phase 2 trial. Lancet Oncol. 2019, 20, 239–253. [Google Scholar] [CrossRef]
- Calabrò, L.; Morra, A.; Giannarelli, D.; Amato, G.; D’Incecco, A.; Covre, A.; Lewis, A.; Rebelatto, M.C.; Danielli, R.; Altomonte, M.; et al. Tremelimumab combined with durvalumab in patients with mesothelioma (NIBIT-MESO-1): An open-label, non-randomised, phase 2 study. Lancet Respir. Med. 2018, 6, 451–460. [Google Scholar] [CrossRef]
- Baldini, E.H.; Richards, W.G.; Gill, R.R.; Goodman, B.M.; Winfrey, O.K.; Eisen, H.M.; Mak, R.H.; Chen, A.B.; Kozono, D.E.; Bueno, R.; et al. Updated patterns of failure after multimodality therapy for malignant pleural mesothelioma. J. Thorac. Cardiovasc. Surg. 2015, 149, 1374–1381. [Google Scholar] [CrossRef] [Green Version]
- Kostron, A.; Friess, M.; Crameri, O.; Inci, I.; Schneiter, D.; Hillinger, S.; Stahel, R.; Weder, W.; Opitz, I. Relapse pattern and second-line treatment following multimodality treatment for malignant pleural mesothelioma. Eur. J. Cardio-Thorac. Surg. 2015, 49, 1516–1523. [Google Scholar] [CrossRef]
- Soldera, S.V.; Kavanagh, J.; Pintilie, M.; Leighl, N.B.; De Perrot, M.; Cho, J.; Hope, A.; Feld, R.; Bradbury, P.A. Systemic Therapy Use and Outcomes After Relapse from Preoperative Radiation and Extrapleural Pneumonectomy for Malignant Pleural Mesothelioma. Oncologist 2019, 24, e510–e517. [Google Scholar] [CrossRef] [Green Version]
- WHO. Rapid Communication: Key Changes to Treatment of Drug-resistant Tuberculosis; WHO/CDS/TB/2019.26; World Health Organization: Geneva, Switzerland, December 2019. [Google Scholar]
- WHO. Global Tuberculosis Report 2019; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Talwar, A.; Tsang, C.A.; Price, S.F.; Pratt, R.H.; Walker, W.L.; Schmit, K.M.; Langer, A.J. Tuberculosis-United States, 2018. MMWR. Morb. Mortal. Wkly. Rep. 2019, 68, 257–262. [Google Scholar] [CrossRef]
- Dewan, R.K.; Pezzella, A.T. Surgical aspects of pulmonary tuberculosis: An update. Asian Cardiovasc. Thorac. Ann. 2016, 24, 835–846. [Google Scholar] [CrossRef]
- Yablonskii, P.K.; Kudriashov, G.G.; Avetisyan, A.O. Surgical Resection in the Treatment of Pulmonary Tuberculosis. Thorac. Surg. Clin. 2019, 29, 37–46. [Google Scholar] [CrossRef]
- Yablonskiy, P.K.; Vasil’ev, I.V.; Kirjuhina, L.D. Immediate results of pneumonectomies in patients with unilateral localization of destructive pulmonary tuberculosis. Results of the prospective, non-randomized study. Med. Al’yans 2017, 4, 103–111. (In Russian) [Google Scholar]
- Harris, R.C.; Khan, M.S.; Martin, L.J.; Allen, V.; Moore, D.A.J.; Fielding, K.; Grandjean, L. The effect of surgery on the outcome of treatment for multidrug-resistant tuberculosis: A systematic review and meta-analysis. BMC Infect. Dis. 2016, 16, 262. [Google Scholar] [CrossRef] [Green Version]
- Vashakidze, S.; Gogishvili, S.; Nikolaishvili, K.; Dzidzikashvili, N.; Tukvadze, N.; Blumberg, H.M.; Kempker, R.R. Favorable outcomes for multidrug and extensively drug resistant tuberculosis patients undergoing surgery. Ann. Thorac. Surg. 2013, 95, 1892–1898. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.-W.; Kim, H.K.; Choi, Y.S.; Kim, K.; Shim, Y.M.; Koh, W.-J.; Kim, J. Surgical Treatment for Multidrug-Resistant and Extensive Drug-Resistant Tuberculosis. Ann. Thorac. Surg. 2010, 89, 1597–1602. [Google Scholar] [CrossRef]
- Yaldiz, S.; Gursoy, S.; Ucvet, A.; Kaya, S.O. Surgery Offers High Cure Rates in Multidrug-resistant Tuberculosis. Ann. Thorac. Cardiovasc. Surg. 2011, 17, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Shiraishi, Y.; Katsuragi, N.; Kita, H.; Tominaga, Y.; Kariatsumari, K.; Onda, T. Aggressive surgical treatment of multidrug-resistant tuberculosis. J. Thorac. Cardiovasc. Surg. 2009, 138, 1180–1184. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Lin, H.; Jiang, G. Pulmonary Resection in the Treatment of Multidrug-Resistant Tuberculosis: A Retrospective Study of 56 Cases. Ann. Thorac. Surg. 2008, 86, 1640–1645. [Google Scholar] [CrossRef]
- Kir, A.; Inci, I.; Torun, T.; Atasalihi, A.; Tahaoglu, K. Adjuvant resectional surgery improves cure rates in multidrug-resistant tuberculosis. J. Thorac. Cardiovasc. Surg. 2006, 131, 693–696. [Google Scholar] [CrossRef] [Green Version]
- Naidoo, R.; Reddi, A. Lung Resection for Multidrug-Resistant Tuberculosis. Asian Cardiovasc. Thorac. Ann. 2005, 13, 172–174. [Google Scholar] [CrossRef]
- Park, S.K.; Lee, C.M.; Heu, J.P.; Song, S.D. A retrospective study for the outcome of pulmonary resection in 49 patients with multidrug-resistant tuberculosis. Int. J. Tuberc. Lung Dis. 2002, 6, 143–149. [Google Scholar] [PubMed]
- Lakshmanan, M.; Xavier, A.S. Bedaquiline—The first ATP synthase inhibitor against multi drug resistant tuberculosis. J. Young Pharm. 2013, 5, 112–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charan, J.; Reljic, T.; Kumar, A. Bedaquiline versus placebo for management of multiple drug-resistant tuberculosis: A systematic review. Indian J. Pharmacol. 2016, 48, 186–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salinger, D.H.; Nedelman, J.R.; Mendel, C.; Spigelman, M.; Hermann, D.J. Daily Dosing for Bedaquiline in Patients with Tuberculosis. Antimicrob. Agents Chemother. 2019, 63, 11. [Google Scholar] [CrossRef] [Green Version]
- Diacon, A.H.; Dawson, R.; Hanekom, M.; Narunsky, K.; Venter, A.; Hittel, N.; Geiter, L.J.; Wells, C.D.; Paccaly, A.J.; Donald, P.R. Early bactericidal activity of delamanid (OPC-67683) in smear-positive pulmonary tuberculosis patients. Int. J. Tuberc. Lung Dis. 2011, 15, 949–954. [Google Scholar] [CrossRef]
- Conradie, F.; Diacon, A.H.; Ngubane, N.; Howell, P.; Everitt, D.; Crook, A.M.; Mendel, C.M.; Egizi, E.; Moreira, J.; Timm, J.; et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N. Engl. J. Med. 2020, 382, 893–902. [Google Scholar] [CrossRef]
- Eren, Ş.; Eren, M.N.; Balcı, A.E. Pneumonectomy in children for destroyed lung and the long-term consequences. J. Thorac. Cardiovasc. Surg. 2003, 126, 574–581. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Hong, Z.; Gong, C.; Yan, D.; Liang, Z. Surgical treatment efficacy in 172 cases of tuberculosis-destroyed lungs. Eur. J. Cardio-Thorac. Surg. 2011, 41, 335–340. [Google Scholar] [CrossRef] [Green Version]
- Luzzi, L.; Tenconi, S.; Voltolini, L.; Paladini, P.; Ghiribelli, C.; Di Bisceglie, M.; Gotti, G. Long-term respiratory functional results after pneumonectomy. Eur. J. Cardio-Thorac. Surg. 2008, 34, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Fernández, L.G.; Isbell, J.M.; Jones, D.R.; Laubach, V.E. Compensatory lung growth after pneumonectomy. In Topics in Thoracic Surgery; Guerreiro, C., Paulo, F., Eds.; IntechOpen: Sao Pablo, Brazil, 2012; pp. 415–431. [Google Scholar]
- Kaza, A.K.; Laubach, V.E.; Kern, J.A.; Long, S.M.; Fiser, S.M.; Tepper, J.A.; Nguyen, R.P.; Shockey, K.S.; Tribble, C.G.; Kron, I.L. Epidermal growth factor augments postpneumonectomy lung growth. J. Thorac. Cardiovasc. Surg. 2000, 120, 916–922. [Google Scholar] [CrossRef] [Green Version]
- Dao, D.T.; Anez-Bustillos, L.; Adam, R.M.; Puder, M.; Bielenberg, D.R. Heparin-Binding Epidermal Growth Factor–Like Growth Factor as a Critical Mediator of Tissue Repair and Regeneration. Am. J. Pathol. 2018, 188, 2446–2456. [Google Scholar] [CrossRef] [Green Version]
- Matsui, Y.; Amano, H.; Ito, Y.; Eshima, K.; Tamaki, H.; Ogawa, F.; Iyoda, A.; Shibuya, M.; Kumagai, Y.; Satoh, Y.; et al. The role of vascular endothelial growth factor receptor-1 signaling in compensatory contralateral lung growth following unilateral pneumonectomy. Lab. Investig. 2015, 95, 456–468. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, M.K.; Lee, S.; Arsenault, D.A.; Nose, V.; Wilson, J.M.; Heymach, J.V.; Puder, M. Vascular endothelial growth factor accelerates compensatory lung growth after unilateral pneumonectomy. Am. J. Physiol. Cell. Mol. Physiol. 2007, 292, L742–L747. [Google Scholar] [CrossRef] [Green Version]
- Kaza, A.K.; Kron, I.L.; Leuwerke, S.M.; Tribble, C.G.; E Laubach, V. Keratinocyte growth factor enhances post-pneumonectomy lung growth by alveolar proliferation. Circulation 2002, 106, I-120. [Google Scholar]
- Sakamaki, Y.; Matsumoto, K.; Mizuno, S.; Miyoshi, S.; Matsuda, H.; Nakamura, T. Hepatocyte Growth Factor Stimulates Proliferation of Respiratory Epithelial Cells during Postpneumonectomy Compensatory Lung Growth in Mice. Am. J. Respir. Cell Mol. Biol. 2002, 26, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Dao, D.T.; Anez-Bustillos, L.; Jabbouri, S.S.; Pan, A.; Kishikawa, H.; Mitchell, P.D.; Fell, G.L.; Baker, M.A.; Watnick, R.S.; Chen, H.; et al. A paradoxical method to enhance compensatory lung growth: Utilizing a VEGF inhibitor. PLoS ONE 2018, 13, e0208579. [Google Scholar] [CrossRef]
- Dane, D.M.; Yilmaz, C.; Gyawali, D.; Iyer, R.; Menon, J.U.; Nguyen, K.T.; Ravikumar, P.; Estrera, A.S.; Hsia, C.C.W. Erythropoietin inhalation enhances adult canine alveolar-capillary formation following pneumonectomy. Am. J. Physiol. Cell. Mol. Physiol. 2019, 316, L936–L945. [Google Scholar] [CrossRef]
- Takahashi, Y.; Izumi, Y.; Kohno, M.; Kimura, T.; Kawamura, M.; Okada, Y.; Nomori, H.; Ikeda, E. Thyroid Transcription Factor-1 Influences the Early Phase of Compensatory Lung Growth in Adult Mice. Am. J. Respir. Crit. Care Med. 2010, 181, 1397–1406. [Google Scholar] [CrossRef]
- Takahashi, Y.; Izumi, Y.; Kohno, M.; Kawamura, M.; Ikeda, E.; Nomori, H. Airway administration of dexamethasone, 3′-5′-cyclic adenosine monophosphate, and isobutylmethylxanthine facilitates compensatory lung growth in adult mice. Am. J. Physiol. Cell. Mol. Physiol. 2011, 300, L453–L461. [Google Scholar] [CrossRef] [Green Version]
- Lechner, A.J.; Driver, I.H.; Lee, J.; Conroy, C.M.; Nagle, A.; Locksley, R.M.; Rock, J.R. Recruited Monocytes and Type 2 Immunity Promote Lung Regeneration following Pneumonectomy. Cell Stem Cell 2017, 21, 120–134. [Google Scholar] [CrossRef] [Green Version]
- Mammoto, T.; Chen, Z.; Jiang, A.; Jiang, E.; Ingber, N.E.; Mammoto, A. Acceleration of Lung Regeneration by Platelet-Rich Plasma Extract through the Low-Density Lipoprotein Receptor-Related Protein 5-Tie2 Pathway. Am. J. Respir. Cell Mol. Biol. 2016, 54, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Edvardsen, E.; Skjonsberg, O.H.; Holme, I.; Nordsletten, L.; Borchsenius, F.; Anderssen, S.A. High-intensity training following lung cancer surgery: A randomised controlled trial. Thorax 2015, 70, 244–250. [Google Scholar] [CrossRef] [Green Version]
- Kendall, F.; Abreu, P.; Pinho, P.; Oliveira, J.; Bastos, P. The role of physiotherapy in patients undergoing pulmonary surgery for lung cancer. A literature review. Rev. Port. De Pneumol. 2017, 23, 343–351. [Google Scholar] [CrossRef]
- Skrzypczak, P.J.; Roszak, M.; Kasprzyk, M.; Kopczyńska, A.; Gabryel, P.; Dyszkiewicz, W. Pneumonectomy-permanent injury or still effective method of treatment? Early and long-term results and quality of life after pneumonectomy due to non-small cell lung cancer. Pol. J. Cardio-Thorac. Surg. 2019, 16, 7–12. [Google Scholar] [CrossRef]
- Lindner, M.; Hapfelmeier, A.; Morresi-Hauf, A.; Schmidt, M.; Hatz, R.; Winter, H. Bronchial Stump Coverage and Postpneumonectomy Bronchopleural Fistula. Asian Cardiovasc. Thorac. Ann. 2010, 18, 443–449. [Google Scholar] [CrossRef]
- Mazzella, A.; Pardolesi, A.; Maisonneuve, P.; Petrella, F.; Galetta, D.; Gasparri, R.; Spaggiari, L. Bronchopleural Fistula After Pneumonectomy: Risk Factors and Management, Focusing on Open-Window Thoracostomy. Semin. Thorac. Cardiovasc. Surg. 2018, 30, 104–113. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, N.; Priefer, R. Drug Regimen for Patients after a Pneumonectomy. J. Respir. 2021, 1, 114-134. https://doi.org/10.3390/jor1020013
Kim N, Priefer R. Drug Regimen for Patients after a Pneumonectomy. Journal of Respiration. 2021; 1(2):114-134. https://doi.org/10.3390/jor1020013
Chicago/Turabian StyleKim, Noheul, and Ronny Priefer. 2021. "Drug Regimen for Patients after a Pneumonectomy" Journal of Respiration 1, no. 2: 114-134. https://doi.org/10.3390/jor1020013
APA StyleKim, N., & Priefer, R. (2021). Drug Regimen for Patients after a Pneumonectomy. Journal of Respiration, 1(2), 114-134. https://doi.org/10.3390/jor1020013