From Information Overload to Actionable Insights: Digital Solutions for Interpreting Cancer Variants from Genomic Testing
Abstract
:1. Introduction
2. Considerations for Implementing Decision Support Software
3. Recent Results on NAVIFY Mutation Profiler
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malone, E.R.; Oliva, M.; Sabatini, P.J.B.; Stockley, T.L.; Siu, L.L. Molecular profiling for precision cancer therapies. Genome Med. 2020, 12, 8. [Google Scholar] [CrossRef] [Green Version]
- Gierman, H.J.; Pai, N.; Catasus, C.; Tam, A.; Labrador, M.; Donaldson, J.; Singaraju, M.; Singleton, N.; Verniero, J.; Smith, R.E.; et al. A retrospective three-year analysis using real-world data on uptake of broad-based NextGen sequencing panels in community oncology practices. J. Clin. Oncol. 2020, 38, e13668. [Google Scholar] [CrossRef]
- Burris, I.I.I.H.A.; Schlauch, D.; McKenzie, A.; Sharma, Y.; Spigel, D.R.; Jones, S.F.; Dilks, H.H. Adoption and utilization of NGS-based molecular profiling in community-based oncology practices: Insights from Sarah Cannon. J. Glob. Oncol. 2019, 5, 34. [Google Scholar] [CrossRef]
- Whitten, C.M.; Thum, A.; Blass, T. Current and future next generation sequencing usage in European molecular oncology diagnostics. Ann. Oncol. 2016, 27, vi543. [Google Scholar] [CrossRef]
- Mosele, F.; Remon, J.; Mateo, J.; Westphalen, C.B.; Barlesi, F.; Lolkema, M.P.; Normanno, N.; Scarpa, A.; Robson, M.; Meric-Bernstam, F.; et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: A report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2020, 31, 11. [Google Scholar] [CrossRef]
- Freedman, A.N.; Klabunde, C.N.; Wiant, K.; Enewold, L.; Gray, S.W.; Filipski, K.K.; Keating, N.L.; Leonard, D.G.B.; Lively, T.; McNeel, T.S.; et al. Use of Next-Generation Sequencing Tests to Guide Cancer Treatment: Results from a Nationally Representative Survey of Oncologists in the United States. JCO Precis. Oncol. 2018, 2, 1–13. [Google Scholar] [CrossRef]
- Serramito-Gómez, I.; Clarke, K.M.; Rodríguez-vicente, A.E.; Mcgimpsey, J.E.; Abáigar, M.; Díez, C.B.; Benito, R.; Bullinger, L.; Mills, K.I.; María, J.; et al. NEMHESYS—European Perspective on the Implementation of Next-generation Sequencing into Clinical Diagnostics. HemaSphere 2021, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Bacher, U.; Shumilov, E.; Flach, J.; Porret, N.; Joncourt, R.; Wiedemann, G.; Fiedler, M.; Novak, U.; Amstutz, U.; Pabst, T. Challenges in the introduction of next-generation sequencing (NGS) for diagnostics of myeloid malignancies into clinical routine use. Blood Cancer J. 2018, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Zhang, R.; Li, Z.; Ding, J.; Xie, J.; Li, J. Challenges of Providing Concordant Interpretation of Somatic Variants in Non-Small Cell Lung Cancer: A Multicenter Study. J. Cancer 2019, 10, 1814–1824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffith, M.; Spies, N.C.; Krysiak, K.; McMichael, J.F.; Coffman, A.C.; Danos, A.M.; Ainscough, B.J.; Ramirez, C.A.; Rieke, D.T.; Kujan, L.; et al. CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nat. Genet 2017, 49, 170–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakravarty, D.; Gao, J.; Phillips, S.; Kundra, R.; Zhang, H.; Wang, J.; Rudolph, J.E.; Yaeger, R.; Soumerai, T.; Nissan, M.H.; et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis. Oncol. 2017, 1, 1–16. [Google Scholar] [CrossRef]
- Patterson, S.E.; Statz, C.M.; Yin, T.; Mockus, S.M. Utility of the JAX Clinical Knowledgebase in capture and assessment of complex genomic cancer data. NPJ Precis. Oncol. 2019, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Pallarz, S.; Benary, M.; Lamping, M.; Rieke, D.; Starlinger, J.; Sers, C.; Wiegandt, D.L.; Seibert, M.; Ševa, J.; Schäfer, R.; et al. Comparative Analysis of Public Knowledge Bases for Precision Oncology. JCO Precis. Oncol. 2019, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.H.; Walsh, B.; Mayfield, G.; Tamborero, D.; Sonkin, D.; Krysiak, K.; Deu-Pons, J.; Duren, R.P.; Gao, J.; McMurry, J.; et al. A harmonized meta-knowledgebase of clinical interpretations of somatic genomic variants in cancer. Nat. Genet 2020, 52, 448–457. [Google Scholar] [CrossRef] [Green Version]
- Sirohi, D.; Schmidt, R.L.; Aisner, D.L.; Behdad, A.; Betz, B.L.; Brown, N.; Coleman, J.F.; Corless, C.L.; Deftereos, G.; Ewalt, M.D.; et al. Multi-Institutional Evaluation of Interrater Agreement of Variant Classification Based on the 2017 Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists Standards and Guidelines for the Interpreta. J. Mol. Diagn. 2020, 22, 284–293. [Google Scholar] [CrossRef]
- Patt, D.A.; Bernstam, E.V.; Mandel, J.C.; Kreda, D.A.; Warner, J.L. More Medicine, Fewer Clicks: How Informatics Can Actually Help Your Practice. Am. Soc. Clin. Oncol. Educ. B 2017, 37, 450–459. [Google Scholar] [CrossRef]
- Walsh, S.; de Jong, E.E.C.; van Timmeren, J.E.; Ibrahim, A.; Compter, I.; Peerlings, J.; Sanduleanu, S.; Refaee, T.; Keek, S.; Larue, R.T.H.M.; et al. Decision Support Systems in Oncology. JCO Clin. Cancer Inform. 2019, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Hussaini, M. Adopting solutions for annotation and reporting of next generation sequencing in clinical practice. Pract. Lab. Med. 2020, 19, e00154. [Google Scholar] [CrossRef]
- Li, M.M.; Datto, M.; Duncavage, E.J.; Kulkarni, S.; Lindeman, N.I.; Roy, S.; Tsimberidou, A.M.; Vnencak-Jones, C.L.; Wolff, D.J.; Younes, A.; et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J. Mol. Diagn. 2017, 19, 4–23. [Google Scholar] [CrossRef] [Green Version]
- Mateo, J.; Chakravarty, D.; Dienstmann, R.; Jezdic, S.; Gonzalez-Perez, A.; Lopez-Bigas, N.; Ng, C.K.Y.; Bedard, P.L.; Tortora, G.; Douillard, J.Y.; et al. A framework to rank genomic alterations as targets for cancer precision medicine: The ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann. Oncol. 2018, 29, 1895–1902. [Google Scholar] [CrossRef] [PubMed]
- Spence, T.; Sukhai, M.A.; Kamel-Reid, S.; Stockley, T.L. The somatic curation and interpretation across laboratories (SOCIAL) project—Current state of solid-tumour variant interpretation for molecular pathology in Canada. Curr. Oncol. 2019, 26, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Dienstmann, R.; Dong, F.; Borger, D.; Dias-Santagata, D.; Ellisen, L.W.; Le, L.P.; Iafrate, A.J. Standardized decision support in next generation sequencing reports of somatic cancer variants. Mol. Oncol. 2014, 8, 859–873. [Google Scholar] [CrossRef]
- Sukhai, M.A.; Craddock, K.J.; Thomas, M.; Hansen, A.R.; Zhang, T.; Siu, L.; Bedard, P.; Stockley, T.L.; Kamel-Reid, S. A classification system for clinical relevance of somatic variants identified in molecular profiling of cancer. Genet. Med. 2016, 18, 128–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Froyen, G.; Le Mercier, M.; Lierman, E.; Vandepoele, K.; Nollet, F.; Boone, E.; Van der Meulen, J.; Jacobs, K.; Lambin, S.; Vander Borght, S.; et al. Standardization of Somatic Variant Classifications in Solid and Haematological Tumours by a Two-Level Approach of Biological and Clinical Classes: An Initiative of the Belgian ComPerMed Expert Panel. Cancers 2019, 11, 2030. [Google Scholar] [CrossRef] [Green Version]
- Palomo, L.; Ibáñez, M.; Abáigar, M.; Vázquez, I.; Álvarez, S.; Cabezón, M.; Tazón-Vega, B.; Rapado, I.; Fuster-Tormo, F.; Cervera, J.; et al. Spanish Guidelines for the use of targeted deep sequencing in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br. J. Haematol. 2020, 188, 605–622. [Google Scholar] [CrossRef] [Green Version]
- Leichsenring, J.; Horak, P.; Kreutzfeldt, S.; Heining, C.; Christopoulos, P.; Volckmar, A.L.; Neumann, O.; Kirchner, M.; Ploeger, C.; Budczies, J.; et al. Variant classification in precision oncology. Int. J. Cancer 2019, 145, 2996–3010. [Google Scholar] [CrossRef] [PubMed]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio Cancer Genomics Portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buechner, P.; Hinderer, M.; Unberath, P.; Metzger, P.; Boeker, M.; Acker, T.; Haller, F.; Mack, E.; Nowak, D.; Paret, C.; et al. Requirements analysis and specification for a molecular tumor board platform based on CBIoPortal. Diagnostics 2020, 10, 93. [Google Scholar] [CrossRef] [Green Version]
- He, M.M.; Li, Q.; Yan, M.; Cao, H.; Hu, Y.; He, K.Y.; Cao, K.; Li, M.M.; Wang, K. Variant Interpretation for Cancer (VIC): A computational tool for assessing clinical impacts of somatic variants. Genome Med. 2019, 11, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonomi, L.; Tyropolis, A.; Lebel, K.; Moore, F. Evaluation of the NAVIFY Mutation Profiler for Next-Generation Sequencing Variant Interpretation and Reporting. In The Journal of Molecular Diagnostics; Association for Molecular Pathology: Rockville, MD, USA, 2019; p. 1167. [Google Scholar]
- Ward, P.; Campan, M.; Pettersson, J.; Bask, M.; Dubeau, L. Evaluation of Roche NAVIFY Mutation Profiler for NGS Variant Annotation and Reporting. In The Journal of Molecular Diagnostics; Association for Molecular Pathology: Rockville, MD, USA, 2020; p. S48. [Google Scholar]
- Scudder, S.A.; Grewal, A.; Capucion, L.; Zhang, G.; Formin, L.; Krishna, S.; Decker, X.; Chung, J. Clinical validation of NAVIFY ® Mutation Profiler for solid tumor NGS variant interpretation. In Clinical Research (Excluding Clinical Trials); American Association for Cancer Research: Philadelphia, PA, USA, 2020; p. 5456. [Google Scholar]
- Yaung, S.J.; Krishna, S.; Xi, L.; Ju, C.; Palma, J.F.; Schmid, M. Assessment of a Highly Curated Somatic Oncology Database to Aid in the Interpretation of Clinically Important Variants in Next-Generation Sequencing Results. J. Mol. Diagn. 2020, 22, 1356–1366. [Google Scholar] [CrossRef]
- Flaherty, K.T.; Gray, R.; Chen, A.; Li, S.; Patton, D.; Hamilton, S.R.; Williams, P.M.; Mitchell, E.P.; Iafrate, A.J.; Sklar, J.; et al. The Molecular Analysis for Therapy Choice (NCI-MATCH) Trial: Lessons for Genomic Trial Design. JNCI J. Natl. Cancer Inst. 2020, 112, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sundin, T.; Aunchman, M.; Grissom, L.; Inman, J.; Mingo, S.; Mollica, P.A.; Post, R.; Shean, A.; Nasim, S.; Seidman, D. Comparison of Next-Generation Sequencing Assays for Clinical Use in Solid Tumor Malignancies. In The Journal of Molecular Diagnostics; Association for Molecular Pathology: Rockville, MD, USA, 2019; p. 1183. [Google Scholar]
- Yaung, S.J.; Krishna, S.; Scudder, S.; Schmid, M.; Palma, J.F. Comparison of variant classification between molecular diagnostics experts and decision support software. In Bioinformatics and Systems Biology; American Association for Cancer Research: Philadelphia, PA, USA, 2021; p. 249. [Google Scholar]
- Li, J.; Niu, L.; Kinshuk, F.; Chu, B.; Mu, J.; Greene, N.; Douglas, V.; Schartner, C.; Kannan, K.; Rao, P.; et al. Ephesus—A curated content knowledgebase for the clinical interpretation of genomic variants. In Bioinformatics and Systems Biology; American Association for Cancer Research: Philadelphia, PA, USA, 2021; p. 169. [Google Scholar]
- Yaung, S.; Li, J.; Pek, A.; Niu, L.; Palma, J.F.; Schmid, M. 136P Evaluation of a regularly updated knowledge base and automated variant interpretation tool for somatic mutations detected in solid tumours. Ann. Oncol. 2020, 31, S294. [Google Scholar] [CrossRef]
- Marques, M.; Gambaro, K.; Couetoux du Tertre, M.; McNamara, S.; Batist, G. Initial Tertiary Reporting Results from Personalize My Treatment (PMT): A Pan-Canadian Initiative Integrating Precision Oncology across Canada: PMT-001 Pilot Project. In The Journal of Molecular Diagnostics; Association for Molecular Pathology: Rockville, MD, USA, 2020; p. S78. [Google Scholar]
- Yaung, S.; Li, J.; Pek, A.; Niu, L.; Palma, J.; Schmid, M. P35.24 Evaluation of an Up-To-Date Knowledge Base to Aid in Interpreting Somatic Mutations Detected in NGS Testing of Lung Cancer. J. Thorac. Oncol. 2021, 16, S430–S431. [Google Scholar] [CrossRef]
- Sakai, K.; Takeda, M.; Shimizu, S.; Takahama, T.; Yoshida, T.; Watanabe, S.; Iwasa, T.; Yonesaka, K.; Suzuki, S.; Hayashi, H.; et al. A comparative study of curated contents by knowledge-based curation system in cancer clinical sequencing. Sci. Rep. 2019, 9, 11340. [Google Scholar] [CrossRef]
- Katsoulakis, E.; Duffy, J.E.; Hintze, B.; Spector, N.L.; Kelley, M.J. Comparison of Annotation Services for Next-Generation Sequencing in a Large-Scale Precision Oncology Program. JCO Precis. Oncol. 2020, 4, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Perakis, S.O.; Weber, S.; Zhou, Q.; Graf, R.; Hojas, S.; Riedl, J.M.; Gerger, A.; Dandachi, N.; Balic, M.; Hoefler, G.; et al. Comparison of three commercial decision support platforms for matching of next-generation sequencing results with therapies in patients with cancer. ESMO Open 2020, 5, e000872. [Google Scholar] [CrossRef] [PubMed]
- Yaung, S.J.; Pek, A.; Niu, L.; Li, J.; Palma, J.F.; Schmid, M. Feasibility of a Decision Support Software to Aid in the Interpretation of Somatic Mutations Detected in Hematologic Malignancies. Blood 2020, 136, 40–41. [Google Scholar] [CrossRef]
Key Areas | Description |
---|---|
Accuracy of content | Correctness and reliability of the scientific and clinical information |
Approach to curation | Method used to organize and maintain evidence data |
Usability | Intuitiveness and user-friendliness of the software |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaung, S.J.; Pek, A. From Information Overload to Actionable Insights: Digital Solutions for Interpreting Cancer Variants from Genomic Testing. J. Mol. Pathol. 2021, 2, 312-318. https://doi.org/10.3390/jmp2040027
Yaung SJ, Pek A. From Information Overload to Actionable Insights: Digital Solutions for Interpreting Cancer Variants from Genomic Testing. Journal of Molecular Pathology. 2021; 2(4):312-318. https://doi.org/10.3390/jmp2040027
Chicago/Turabian StyleYaung, Stephanie J., and Adeline Pek. 2021. "From Information Overload to Actionable Insights: Digital Solutions for Interpreting Cancer Variants from Genomic Testing" Journal of Molecular Pathology 2, no. 4: 312-318. https://doi.org/10.3390/jmp2040027
APA StyleYaung, S. J., & Pek, A. (2021). From Information Overload to Actionable Insights: Digital Solutions for Interpreting Cancer Variants from Genomic Testing. Journal of Molecular Pathology, 2(4), 312-318. https://doi.org/10.3390/jmp2040027