Measuring Behavioral Influence on Social Media: A Social Impact Theory Approach to Identifying Influential Users
Abstract
1. Introduction
2. The Social Influence Strength Index (SISI)
- = total engagements (likes, comments, shares, saves) for post i;
- = potential audience (preferably reach, otherwise estimated via followers × platform reach rate);
- = number of post analyzed.
- = individual follower count;
- = median followers within the comparison group.
- = total mentions by verified account (direct @tags, replies, quote shares);
- = median mentions in the comparison group.
3. Methodology
3.1. Research Context and Data Selection
3.2. Data Collection Protocol
3.2.1. Data Collection
3.2.2. Keyword Development and Validation
3.2.3. Iterative Refinement and Expansion
3.3. Data Extraction
3.4. Validation Procedures
3.4.1. Predictive Validity
3.4.2. Discriminant Validity
- Content Creator: Original analyses, firsthand reporting, novel arguments;
- Amplifier: Primarily retweets or quotes with minimal added value;
- Mixed: Combines substantial original content with amplification.
3.4.3. Convergent Validity
4. Results
4.1. Dataset Overview and Descriptive Statistics
4.2. SISI Component Analysis
4.2.1. Average Engagement Rate (AER)
4.2.2. Follower Reach Score (FRS) Distribution and Context
4.2.3. Mention Prominence Score (MPS) Results and Community Recognition
4.3. Integrated SISI Performance and Validation
4.3.1. Overall SISI Rankings and Centrality Divergence
4.3.2. Behavioral Influence Evidence and Quality–Quantity Patterns
4.4. Model Validation
5. Discussion
5.1. Theoretical Contributions to Computational Social Science
5.2. Implications for Journalism and Digital News Ecosystems
5.3. Methodological Advances
5.4. Practical Applications
5.5. Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Annaki, F., Ouassou, S., & Igamane, S. (2025). Visibility and influence in digital social relations: Towards a new symbolic capital? arXiv, arXiv:2505.08797. [Google Scholar]
- Ausat, A. M. A. (2023). The role of social media in shaping public opinion and its influence on economic decisions. Technology and Society Perspectives (TACIT), 1(1), 35–44. [Google Scholar] [CrossRef]
- Bakshy, E., Hofman, J. M., Mason, W. A., & Watts, D. J. (2011, February 9–12). Everyone’s an influencer: Quantifying influence on Twitter. Fourth ACM International Conference on Web Search and Data Mining (pp. 65–74), Hong Kong, China. [Google Scholar] [CrossRef]
- Bhandari, A., & Bimo, S. (2022). Why’s everyone on TikTok now? The algorithmized self and the future of self-making on social media. Social Media + Society, 8(3), 1–11. [Google Scholar] [CrossRef]
- Cha, M., Haddadi, H., Benevenuto, F., & Gummadi, K. (2010). Measuring user influence in Twitter: The million follower fallacy. Proceedings of the International AAAI Conference on Web and Social Media, 4(1), 10–17. [Google Scholar] [CrossRef]
- Chalakudi, S. N., Hussain, D., Bharathy, G., & Kolluru, M. (2023). Measuring social influence in online social networks-focus on human behavior analytics. Available online: https://digitalcommons.georgiasouthern.edu/amtp-proceedings_2023/9 (accessed on 27 November 2025).
- Chani, T., Olugbara, O., & Mutanga, B. (2023). The problem of data extraction in social media: A theoretical framework. Journal of Information Systems and Informatics, 5(4), 1363–1384. [Google Scholar] [CrossRef]
- Chen, Y., Sherren, K., Lee, K. Y., McCay-Peet, L., Xue, S., & Smit, M. (2024). From theory to practice: Insights and hurdles in collecting social media data for social science research. Frontiers in Big Data, 7, 1379921. [Google Scholar] [CrossRef]
- Chiumbu, S. H., & Moyo, D. (2018). “South Africa belongs to all who live in it”: Deconstructing media discourses of migrants during times of xenophobic attacks, from 2008 to 2017. Communicare: Journal for Communication Sciences in Southern Africa, 37(1), 136–152. [Google Scholar] [CrossRef]
- ContentStudio. (2025). How to calculate social media engagement rate in 2025? ContentStudio. Available online: https://contentstudio.io/blog/social-media-engagement-rate (accessed on 27 November 2025).
- Corsi, G. (2024). Evaluating Twitter’s algorithmic amplification of low-credibility content: An observational study. EPJ Data Science, 13, 18. [Google Scholar] [CrossRef]
- Dratwa, B. (2023). ‘Put South Africans first’: Making sense of an emerging South African xenophobic (online) community. Journal of Southern African Studies, 49(1), 85–103. [Google Scholar] [CrossRef]
- Dujeancourt, E., & Garz, M. (2023). The effects of algorithmic content selection on user engagement with news on Twitter. The Information Society, 39(5), 263–281. [Google Scholar] [CrossRef]
- Edelmann, A., Wolff, T., Montagne, D., & Bail, C. A. (2020). Computational social science and sociology. Annual Review of Sociology, 46, 61–81. [Google Scholar] [CrossRef]
- Enberg, J. (2025, May 16). AI and the creator economy: Ambivalence prevails despite strong adoption among creators and marketers. EMarketer. Available online: https://www.emarketer.com/content/ai-creator-economy (accessed on 27 November 2025).
- Engel, T. (2023). Computational social science is growing up: Why puberty consists of embracing measurement validation, theory development, and open science practices. EPJ Data Science, 12(1), 48. [Google Scholar] [CrossRef]
- Fernández, M., Bellogín, A., & Cantador, I. (2024). Analysing the effect of recommendation algorithms on the amplification of misinformation. In L. M. Aiello (Ed.), Proceedings of the 16th ACM Web Science Conference (pp. 159–169). ACM. [Google Scholar] [CrossRef]
- Guest, O., & Martin, A. E. (2021). How computational modeling can force theory building in psychological science. Perspectives on Psychological Science, 16(4), 789–802. [Google Scholar] [CrossRef] [PubMed]
- Guilbeault, D., & Centola, D. (2021). Topological measures for identifying and predicting the spread of complex contagions. Nature Communications, 12(1), 4430. [Google Scholar] [CrossRef] [PubMed]
- Han, J., & Balabanis, G. (2024). Meta--analysis of social media influencer impact: Key antecedents and theoretical foundations. Psychology & Marketing, 41(2), 394–426. [Google Scholar] [CrossRef]
- Harkins, S. G., & Latané, B. (1998). Population and political participation: A social impact analysis of voter responsibility. Group Dynamics: Theory, Research, and Practice, 2(3), 192. [Google Scholar] [CrossRef]
- Hootsuite. (2025). Social media benchmarks: 2025 data + tips. Hootsuite. Available online: https://blog.hootsuite.com/social-media-benchmarks/ (accessed on 25 November 2025).
- Hove, E. (2022). Twitter and the politics of representation in South Africa and Zimbabwe’s xenophobic narratives during the COVID-19 pandemic. Acta Academica: Critical Views on Society, Culture and Politics, 54(2), 179–197. [Google Scholar] [CrossRef]
- Hurcombe, E. (2024). Conceptualising the “newsfluencer”: Intersecting trajectories in online content creation and platformatised journalism. Digital Journalism, 13, 1523–1534. [Google Scholar] [CrossRef]
- Joshi, Y., Lim, W. M., Jagani, K., & Kumar, S. (2023). Social media influencer marketing: Foundations, trends, and ways forward. Electronic Commerce Research, 25, 1199–1253. [Google Scholar] [CrossRef]
- Kim, J., Sonne, S. E. W., Garimella, K., Grow, A., Weber, I., & Zagheni, E. (2023). Online social integration of migrants: Evidence from Twitter. Migration Studies, 11(4), 544–571. [Google Scholar] [CrossRef]
- Kubler, K. (2023). Influencers and the attention economy: The meaning and management of attention on Instagram. Journal of Marketing Management, 39(11–12), 965–981. [Google Scholar] [CrossRef]
- Latané, B. (1981). The psychology of social impact. American Psychologist, 36(4), 343–356. [Google Scholar] [CrossRef]
- Latané, B., & Wolf, S. (1981). The social impact of majorities and minorities. Psychological Review, 88(5), 438–453. [Google Scholar] [CrossRef]
- Lazer, D. M. J., Pentland, A., Watts, D. J., Aral, S., Athey, S., Contractor, N., Freelon, D., Gonzalez-Bailon, S., King, G., Margetts, H., Nelson, A., Salganik, M. J., Strohmaier, M., Vespignani, A., & Wagner, C. (2020). Computational social science: Obstacles and opportunities. Science, 369(6507), 1060–1062. [Google Scholar] [CrossRef]
- Luo, C. (2022). Understanding diffusion models: A unified perspective. arXiv, arXiv:2208.11970. [Google Scholar] [CrossRef]
- Makhura, B. (2022). A discourse analysis of Twitter posts on the perspectives of xenophobia in South Africa. Available online: https://wiredspace.wits.ac.za/items/b55f9b44-bd04-40af-a09e-76b2d5ced746 (accessed on 27 November 2025).
- Margetts, H., & Dorobantu, C. (2023). Computational social science for public policy. In Handbook of computational social science for policy (pp. 3–18). Springer International Publishing. [Google Scholar]
- Mlambo, N., Ncayiyane, M., Chani, T., & Mutanga, M. B. (2025). Understanding influencer followership on social media: A case study of students at a South African university. Journalism and Media, 6(3), 120. [Google Scholar] [CrossRef]
- Mlangeni, S., Nyawo, T., Nyathi, M., Mhlongo, X. V., & Mutanga, M. B. (2025). Instagram through her eyes: Exploring female instagram content creators’ motivations for content creation. Indonesian Journal of Information Systems, 8(1), 93–102. [Google Scholar] [CrossRef]
- Morrison, D., Bedinger, M., Beevers, L., & McClymont, K. (2022). Exploring the raison d’etre behind metric selection in network analysis: A systematic review. Applied Network Science, 7(1), 50. [Google Scholar] [CrossRef]
- Mufadhol, M., Tutupoho, F., Nanulaita, D. T., Bell, A. Z., & Prabowo, B. (2024). The influence of posting frequency, content quality, and interaction with customers on social media on customer loyalty in a start-up business. West Science Business and Management, 2(02), 582–594. [Google Scholar] [CrossRef]
- Nwaiwu, F., Newnes, L., Lattanzio, S., Kingdom, U., Kingdom, U., & Kingdom, U. (2024). Exploring social media metrics: A comprehensive literature review on assessing post-digitalisation outcomes in companies from a people-centric perspective. European Conference on Social Media, 11(1), 169–176. [Google Scholar] [CrossRef]
- Okoronkwo, C. E. (2024). Algorithmic bias in media content distribution and its influence on media consumption: Implications for diversity, equity, and Inclusion (Dei). International Journal of Social Sciences and Management Review, 7(05), 296–310. [Google Scholar] [CrossRef]
- Park, C. S., & Lee, B. Y. (2021). Social media influencer’s reputation: Developing and validating a multidimensional scale. Sustainability, 13(2), 631. [Google Scholar] [CrossRef]
- Raborife, M., Ogbuokiri, B., & Aruleba, K. (2024). The role of social media in xenophobic attack in South Africa. Journal of the Digital Humanities Association of Southern Africa, 5(1), 1–16. [Google Scholar] [CrossRef]
- Radford, J., & Joseph, K. (2020). Theory in, theory out: The uses of social theory in machine learning for social science. Frontiers in Big Data, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- Schoch, D., & Brandes, U. (2016). Re-conceptualizing centrality in social networks. European Journal of Applied Mathematics, 27(6), 971–985. [Google Scholar] [CrossRef]
- Shaheen, H. (2025). Social media marketing research: A bibliometric analysis from Scopus. Future Business Journal, 11(1), 1–26. [Google Scholar] [CrossRef]
- Social Insider. (2025). Social media benchmarks for 2025. Social Insider. Available online: https://www.socialinsider.io/social-media-benchmarks (accessed on 27 November 2025).
- Spiller, T. R., Levi, O., Neria, Y., Suarez-Jimenez, B., Bar-Haim, Y., & Lazarov, A. (2020). On the validity of the centrality hypothesis in cross-sectional between-subject networks of psychopathology. BMC Medicine, 18(1), 297. [Google Scholar] [CrossRef] [PubMed]
- Tang, J. L. (2023). Issue communication network dynamics in connective action: The role of non-political influencers and regular users. Social Media+ Society, 9(2), 20563051231177920. [Google Scholar] [CrossRef]
- Tarisayi, K. S. (2024). Framing operation dudula and anti-immigrant sentiment in South African media discourse. Indonesian Journal of Education and Social Sciences, 3(1), 34–43. [Google Scholar] [CrossRef]
- Tarisayi, K. S., & Manik, S. (2020). An unabating challenge: Media portrayal of xenophobia in South Africa. Cogent Arts & Humanities, 7(1), 1859074. [Google Scholar] [CrossRef]
- Theocharis, Y., & Jungherr, A. (2020). Computational social science and the study of political communication. Political Communication, 38(1–2), 1–22. [Google Scholar] [CrossRef]
- van der Harst, J. P., & Angelopoulos, S. (2024). Less is more: Engagement with the content of social media influencers. Journal of Business Research, 181, 114746. [Google Scholar] [CrossRef]
- Wies, S., Bleier, A., & Edeling, A. (2023). Finding Goldilocks influencers: How follower count drives social media engagement. Journal of Marketing, 87(3), 383–405. [Google Scholar] [CrossRef]
- Zhou, F., Lü, L., Liu, J., & Mariani, M. S. (2024). Beyond network centrality: Individual-level behavioral traits for predicting information superspreaders in social media. National Science Review, 11(7), nwae073. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.-B., Li, Z.-H., & Zhuang, Y.-J. (2021). Identification of influencers in online social networks: Measuring influence considering multidimensional factors exploration. Heliyon, 7(4), e06472. [Google Scholar] [CrossRef]

| Variable | Description | Value/Statistic |
|---|---|---|
| Date Range | Period covered by data collection | 1 January 2021–31 December 2022 |
| Total Tweets | All tweets (original, reply, quote, retweet) | 1,203,417 |
| Unique Users | Distinct user accounts included | 47,892 |
| Languages | Dominant language(s) detected | English = 97.4%; other = 2.6% |
| Retweet Share | % of tweets that were retweets | 63.1% |
| Average Tweet Length | Mean words per tweet | 27.3 (± 11.2) |
| Median Followers per User | Distribution midpoint of follower counts | 1024 |
| Median Engagement Rate (ER) | Median per-post engagement rate | 1.2% |
| Mean Engagement Rate (ER) | Average per-post engagement rate | 1.9% |
| Rank | User Type | AER | FRS | MPS | SISI | Betweenness Rank | Closeness Rank | Eigenvector Rank |
|---|---|---|---|---|---|---|---|---|
| 1 | Activist/Citizen Journalist | 0.087 | 0.41 | 0.33 | 0.52 | 4 | 21 | 15 |
| 2 | Journalist (Verified) | 0.061 | 0.44 | 0.46 | 0.49 | 169 | 3 | 1 |
| 3 | Political Commentator | 0.058 | 0.39 | 0.27 | 0.43 | 42 | 19 | 10 |
| 4 | Civil Society Org. | 0.052 | 0.48 | 0.18 | 0.39 | 273 | 30 | 45 |
| 5 | Academic/Researcher | 0.044 | 0.32 | 0.36 | 0.37 | 87 | 23 | 20 |
| 6 | Activist | 0.041 | 0.28 | 0.33 | 0.35 | 301 | 42 | 38 |
| 7 | News Outlet (Verified) | 0.037 | 0.47 | 0.14 | 0.34 | 190 | 9 | 5 |
| 8 | NGO Worker | 0.032 | 0.29 | 0.25 | 0.31 | 355 | 26 | 32 |
| 9 | Citizen Commentator | 0.030 | 0.25 | 0.26 | 0.29 | 421 | 51 | 43 |
| 10 | Political Party Account | 0.029 | 0.47 | 0.10 | 0.28 | 205 | 7 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chani, T.; Olugbara, O.O. Measuring Behavioral Influence on Social Media: A Social Impact Theory Approach to Identifying Influential Users. Journal. Media 2025, 6, 205. https://doi.org/10.3390/journalmedia6040205
Chani T, Olugbara OO. Measuring Behavioral Influence on Social Media: A Social Impact Theory Approach to Identifying Influential Users. Journalism and Media. 2025; 6(4):205. https://doi.org/10.3390/journalmedia6040205
Chicago/Turabian StyleChani, Tarirai, and Oludayo O. Olugbara. 2025. "Measuring Behavioral Influence on Social Media: A Social Impact Theory Approach to Identifying Influential Users" Journalism and Media 6, no. 4: 205. https://doi.org/10.3390/journalmedia6040205
APA StyleChani, T., & Olugbara, O. O. (2025). Measuring Behavioral Influence on Social Media: A Social Impact Theory Approach to Identifying Influential Users. Journalism and Media, 6(4), 205. https://doi.org/10.3390/journalmedia6040205

