A Review of Group Polarization Research from a Dynamics Perspective
Abstract
1. Introduction
- Conduct a systematic review of the definitions and explanatory theories of group polarization.
- Analyze the dynamics perspective in group polarization research, focusing on three key aspects: propagation dynamics, opinion dynamics, and the coupled dynamics of propagation and opinion.
- Summarize current methods for measuring group polarization.
- Organize existing intervention strategies based on the elements of dynamics and propose a logical framework for dynamics-based interventions.
2. Methodology
2.1. Planning the Review
2.2. Running the Review
2.3. Reporting the Review
3. Definition and Explanatory Theory
3.1. Definition of Group Polarization
3.2. Explanatory Theory of Group Polarization
4. Dynamics Models of Group Polarization
4.1. Propagation Dynamics Model
4.2. Opinion Dynamics Model
4.3. Coupled Dynamics Models
5. Measurement
5.1. Choice Shift
5.2. Multi-Group Opposition
- Discrete opinion
- 2.
- Continuous opinion
6. Impact and Intervention Measures
6.1. Impact of Group Polarization
6.2. Intervention for Group Polarization
6.2.1. Group Polarization Interventions Based on Individual Opinions
6.2.2. Group Polarization Interventions Based on Evolutionary Mechanisms
6.2.3. Group Polarization Interventions Based on Network Structure
6.2.4. Logical Framework for Group Polarization Interventions
7. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abrams, D., Wetherell, M., Cochrane, S., Hogg, M. A., & Turner, J. C. (1990). Knowing what to think by knowing who you are: Self-categorization and the nature of norm formation, conformity and group polarization. British Journal of Social Psychology, 29(2), 97–119. [Google Scholar] [CrossRef] [PubMed]
- Agresti, A., & Agresti, B. F. (1978). Statistical analysis of qualitative variation. Sociological Methodology, 9, 204. [Google Scholar] [CrossRef]
- Aloka, P. J. O., & Bojuwoye, O. (2013). Group polarization effects on decisions by selected Kenyan secondary school disciplinary panels. Journal of Psychology in Africa, 23(2), 275–282. [Google Scholar] [CrossRef]
- Alsinet, T., Argelich, J., Béjar, R., & Martínez, S. (2021). Measuring polarization in online debates. Applied Sciences, 11(24), 11879. [Google Scholar] [CrossRef]
- Amelkin, V., Bogdanov, P., & Singh, A. K. (2019). A distance measure for the analysis of polar opinion dynamics in social networks. ACM Transactions on Knowledge Discovery from Data, 13(4), 1–34. [Google Scholar] [CrossRef]
- Aronson, E., Wilson, T. D., & Sommers, S. R. (2017). Social psychology (9th ed.). Pearson Education India. [Google Scholar]
- Arora, S. D., Singh, G. P., Chakraborty, A., & Maity, M. (2022). Polarization and social media: A systematic review and research agenda. Technological Forecasting and Social Change, 183, 121942. [Google Scholar] [CrossRef]
- Azzimonti, M., & Fernandes, M. (2022). Social media networks, fake news, and polarization. European Journal of Political Economy, 76, 102256. [Google Scholar] [CrossRef]
- Banerjee, A. V. (1992). A simple model of herd behavior. The Quarterly Journal of Economics, 107(3), 797–817. [Google Scholar] [CrossRef]
- Bashari, M., & Akbarzadeh-T, M. R. (2019). Controlling opinions in Deffuant model by reconfiguring the network topology. Physica a Statistical Mechanics and Its Applications, 544, 123462. [Google Scholar] [CrossRef]
- Beam, M. A., Hutchens, M. J., & Hmielowski, J. D. (2018). Facebook news and (de)polarization: Reinforcing spirals in the 2016 US election. Information, Communication & Society, 21(7), 940–958. [Google Scholar] [CrossRef]
- Bekafigo, M. A., Stepanova, E. V., Eiler, B. A., Noguchi, K., & Ramsey, K. L. (2019). The effect of group polarization on opposition to Donald Trump. Political Psychology, 40(5), 1163–1178. [Google Scholar] [CrossRef]
- Benson, J. (2023). Democracy and the epistemic problems of political polarization. American Political Science Review, 118(4), 1719–1732. [Google Scholar] [CrossRef]
- Bessi, A., Coletto, M., Davidescu, G. A., Scala, A., Caldarelli, G., & Quattrociocchi, W. (2015). Science vs. conspiracy: Collective narratives in the age of misinformation. PLoS ONE, 10(2), e0118093. [Google Scholar] [CrossRef]
- Bindel, D., Kleinberg, J., & Oren, S. (2015). How bad is forming your own opinion? Games and Economic Behavior, 92, 248–265. [Google Scholar] [CrossRef]
- Boxell, L., Gentzkow, M., & Shapiro, J. M. (2017). Greater Internet use is not associated with faster growth in political polarization among US demographic groups. Proceedings of the National Academy of Sciences, 114(40), 10612–10617. [Google Scholar] [CrossRef] [PubMed]
- Brady, W. J., Crockett, M. J., & Van Bavel, J. J. (2020). The MAD model of moral contagion: The role of motivation, attention, and design in the spread of moralized content online. Perspectives on Psychological Science, 15(4), 978–1010. [Google Scholar] [CrossRef] [PubMed]
- Brockner, J. (1992). The escalation of commitment to a failing course of action: Toward theoretical progress. Academy of Management Review, 17(1), 39–61. [Google Scholar] [CrossRef]
- Brooks, H. Z., & Porter, M. A. (2020). A model for the influence of media on the ideology of content in online social networks. Physical Review Research, 2(2), 23041. [Google Scholar] [CrossRef]
- Brown, R. (1965). Social psychology. Free Press of Glencoe. [Google Scholar]
- Brum, P. O., Matheus, C., Vimieiro, R., Araújo, E., Meira, W., Jr., & Pappa, G. L. (2022). Political polarization on Twitter during the COVID-19 pandemic: A case study in Brazil. Social Network Analysis and Mining, 12(1), 140. [Google Scholar] [CrossRef]
- Burnstein, E., Miller, H., Vinokur, A., Katz, S., & Crowley, J. (1971). Risky shift is eminently rational. Journal of Personality and Social Psychology, 20(3), 462–471. [Google Scholar] [CrossRef]
- Buskens, V., Corten, R., & Weesie, J. (2008). Consent or conflict: Coevolution of coordination and networks. Journal of Peace Research, 45(2), 205–222. [Google Scholar] [CrossRef]
- Butler, J. K., & Crino, M. D. (1992). Effects of initial tendency and real risk on choice shift. Organizational Behavior and Human Decision Processes, 53(1), 14–34. [Google Scholar] [CrossRef]
- Centola, D. (2018). How behavior spreads: The science of complex contagions. Princeton University Press. [Google Scholar] [CrossRef]
- Chen, J., Kou, G., Wang, H., & Zhao, Y. (2021). Influence identification of opinion leaders in social networks: An agent-based simulation on competing advertisements. Information Fusion, 76, 227–242. [Google Scholar] [CrossRef]
- Chen, T., Shi, J., Yang, J., Cong, G., & Li, G. (2020). Modeling public opinion polarization in group behavior by integrating SIRS-based information diffusion process. Complexity, 2020, 1–20. [Google Scholar] [CrossRef]
- Chen, X., Lijffijt, J., & Bie, T. D. (2018, August 19–23). Quantifying and minimizing risk of conflict in social networks. 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK. [Google Scholar] [CrossRef]
- Cheng, Y., Huang, L., Ramlogan, R., & Li, X. (2017). Forecasting of potential impacts of disruptive technology in promising technological areas: Elaborating the SIRS epidemic model in RFID technology. Technological Forecasting and Social Change, 117, 170–183. [Google Scholar] [CrossRef]
- Cinelli, M., Morales, G. D. F., Galeazzi, A., Quattrociocchi, W., & Starnini, M. (2021). The echo chamber effect on social media. Proceedings of the National Academy of Sciences, 118(9), e2023301118. [Google Scholar] [CrossRef] [PubMed]
- Clifford, P., & Sudbury, A. (1973). A model for spatial conflict. Biometrika, 60(3), 581–588. [Google Scholar] [CrossRef]
- Dai, J., Zhu, J., & Wang, G. (2022). Opinion influence maximization problem in online social networks based on group polarization effect. Information Sciences, 609, 195–214. [Google Scholar] [CrossRef]
- Dandekar, P., Goel, A., & Lee, D. T. (2013). Biased assimilation, homophily, and the dynamics of polarization. Proceedings of the National Academy of Sciences, 110(15), 5791–5796. [Google Scholar] [CrossRef] [PubMed]
- Deffuant, G., Neau, D., Amblard, F., & Weisbuch, G. (2000). Mixing beliefs among interacting agents. Advances in Complex Systems, 3(01n04), 87–98. [Google Scholar] [CrossRef]
- Degroot, M. H. (1974). Reaching a consensus. Journal of the American Statistical Association, 69(345), 118–121. [Google Scholar] [CrossRef]
- Del Vicario, M., Bessi, A., Zollo, F., Petroni, F., Scala, A., Caldarelli, G., Stanley, H. E., & Quattrociocchi, W. (2016). The spreading of misinformation online. Proceedings of the National Academy of Sciences, 113(3), 554–559. [Google Scholar] [CrossRef]
- Di, G. C., & Galanis, G. (2021). Convergence and divergence in dynamic voting with inequality. Journal of Economic Behavior & Organization, 187, 137–158. [Google Scholar] [CrossRef]
- Dong, J., Hu, J., Zhao, Y., & Peng, Y. (2024). Opinion formation analysis for expressed and private opinions (EPOs) models: Reasoning private opinions from behaviors in group decision-making systems. Expert Systems with Applications, 236, 121292. [Google Scholar] [CrossRef]
- Dong, Y., Zhan, M., Kou, G., Ding, Z., & Liang, H. (2018). A survey on the fusion process in opinion dynamics. Information Fusion, 43, 57–65. [Google Scholar] [CrossRef]
- Druckman, J. N., Peterson, E., & Slothuus, R. (2013). How elite partisan polarization affects public opinion formation. American Political Science Review, 107(1), 57–79. [Google Scholar] [CrossRef]
- El-Shinnawy, M., & Vinze, A. S. (1998). Polarization and persuasive argumentation: A study of decision making in group settings. MIS Quarterly, 22(2), 165. [Google Scholar] [CrossRef]
- Esteban, J. M., & Ray, D. (1994). On the measurement of polarization. Econometrica, 62(4), 819. [Google Scholar] [CrossRef]
- Evans, J. H. (2003). Have Americans’ attitudes become more polarized? Social Science Quarterly, 84(1), 71–90. [Google Scholar] [CrossRef]
- Falkenberg, M., Zollo, F., Quattrociocchi, W., Pfeffer, J., & Baronchelli, A. (2024). Patterns of partisan toxicity and engagement reveal the common structure of online political communication across countries. Nature Communications, 15(1), 9596. [Google Scholar] [CrossRef]
- Fershtman, M. (1997). Cohesive group detection in a social network by the segregation matrix index. Social Networks, 19(3), 193–207. [Google Scholar] [CrossRef]
- Festinger, L. (1954). A theory of social comparison processes. Human Relations, 7(2), 117–140. [Google Scholar] [CrossRef]
- Fiorina, M. P., & Abrams, S. J. (2008). Political polarization in the American public. Annual Review of Political Science, 11(1), 563–588. [Google Scholar] [CrossRef]
- Flamino, J., Galeazzi, A., Feldman, S., Macy, M. W., Cross, B., Zhou, Z., Serafino, M., Bovet, A., Makse, H. A., & Szymanski, B. K. (2023). Political polarization of news media and influencers on Twitter in the 2016 and 2020 US presidential elections. Nature Human Behaviour, 7(1), 1–13. [Google Scholar] [CrossRef]
- Fraser, C., Gouge, C., & Billig, M. (1971). Risky shifts, cautious shifts, and group polarization. European Journal of Social Psychology, 1(1), 7–30. [Google Scholar] [CrossRef]
- Friedkin, N. E., & Johnsen, E. C. (1997). Social positions in influence networks. Social Networks, 19(3), 209–222. [Google Scholar] [CrossRef]
- Fu, G., & Zhang, W. (2016). Opinion formation and bi-polarization with biased assimilation and homophily. Physica A: Statistical Mechanics and Its Applications, 444, 700–712. [Google Scholar] [CrossRef]
- Galam, S. (2002). Minority opinion spreading in random geometry. The European Physical Journal B, 25(4), 403–406. [Google Scholar] [CrossRef]
- Garimella, K., De Francisci Morales, G., Gionis, A., & Mathioudakis, M. (2017, February 6–10). Reducing controversy by connecting opposing views. Tenth ACM International Conference on Web Search and Data Mining, Cambridge, UK. [Google Scholar] [CrossRef]
- Gentzkow, M., & Shapiro, J. M. (2011). Ideological segregation online and offline. The Quarterly Journal of Economics, 126(4), 1799–1839. [Google Scholar] [CrossRef]
- Gillani, N., Yuan, A., Saveski, M., Vosoughi, S., & Roy, D. (2018, April 23–27). Me, my echo chamber, and I. 2018 World Wide Web Conference on World Wide Web—WWW’18, Lyon, France. [Google Scholar] [CrossRef]
- Glynn, C. J., & Noelle-Neumann, E. (1986). The spiral of silence: Public opinion-our social skin. Social Forces, 64(3), 828. [Google Scholar] [CrossRef]
- Gonçalves-Segundo, P. R. (2022). Fake news, moral panic, and polarization in Brazil: A critical discursive approach. Linguistic Frontiers, 5(2), 51–60. [Google Scholar] [CrossRef]
- Gonzalez Camacho, L. A., & Alves-Souza, S. N. (2018). Social network data to alleviate cold-start in recommender system: A systematic review. Information Processing & Management, 54(4), 529–544. [Google Scholar] [CrossRef]
- Gross, J., & De Dreu, C. K. W. (2019). The rise and fall of cooperation through reputation and group polarization. Nature Communications, 10(1), 776. [Google Scholar] [CrossRef]
- Hegselmann, R., & Krause, U. (2002). Opinion dynamics and bounded confidence models, analysis and simulation. RePEc: Research Papers in Economics, 5(3), 1–2. [Google Scholar] [CrossRef]
- Hobolt, S. B., Lawall, K., & Tilley, J. (2023). The polarizing effect of partisan echo chambers. American Political Science Review, 118(3), 1464–1479. [Google Scholar] [CrossRef]
- Hogg, M. A., & Reid, S. A. (2006). Social identity, self-categorization, and the communication of group norms. Communication Theory, 16(1), 7–30. [Google Scholar] [CrossRef]
- Holley, R. A., & Liggett, T. M. (1975). Ergodic theorems for weakly interacting infinite systems and the voter model. The Annals of Probability, 3(4), 643–663. [Google Scholar] [CrossRef]
- Hong, S., & Kim, S. H. (2016). Political polarization on twitter: Implications for the use of social media in digital governments. Government Information Quarterly, 33(4), 777–782. [Google Scholar] [CrossRef]
- Huddy, L., Mason, L., & Aaroe, L. (2015). Expressive partisanship: Campaign involvement, political emotion, and partisan identity. American Political Science Review, 109(1), 1–17. [Google Scholar] [CrossRef]
- Iandoli, L., Primario, S., & Zollo, G. (2021). The impact of group polarization on the quality of online debate in social media: A systematic literature review. Technological Forecasting and Social Change, 170, 120924. [Google Scholar] [CrossRef]
- Isenberg, D. J. (1986). Group polarization: A critical review and meta-analysis. Journal of Personality and Social Psychology, 50(6), 1141–1151. [Google Scholar] [CrossRef]
- Iyengar, S., Lelkes, Y., Levendusky, M., Malhotra, N., & Westwood, S. J. (2019). The origins and consequences of affective polarization in the United States. Annual Review of Political Science, 22(1), 129–146. [Google Scholar] [CrossRef]
- Iyer, G., & Yoganarasimhan, H. (2021). Strategic polarization in group interactions. Journal of Marketing Research, 58(4), 782–800. [Google Scholar] [CrossRef]
- Jager, W., & Amblard, F. (2005). Uniformity, bipolarization and pluriformity captured as generic stylized behavior with an agent-based simulation model of attitude change. Computational and Mathematical Organization Theory, 10(4), 295–303. [Google Scholar] [CrossRef]
- Jiang, B., Zhao, Y., Dong, J., & Hu, J. (2023). Analysis of the influence of trust in opposing opinions: An inclusiveness-degree based Signed Deffuant–Weisbush model. Information Fusion, 104, 102173. [Google Scholar] [CrossRef]
- Jiang, J., Chen, E., Yan, S., Lerman, K., & Ferrara, E. (2020). Political polarization drives online conversations about COVID-19 in the United States. Human Behavior and Emerging Technologies, 2(3), 200–211. [Google Scholar] [CrossRef]
- Johnson, T. J., Kaye, B. K., & Lee, A. M. (2017). Blinded by the spite? path model of political attitudes, selectivity, and social media. Atlantic Journal of Communication, 25(3), 181–196. [Google Scholar] [CrossRef]
- Jones, D. R. (2015). Declining trust in congress: Effects of polarization and consequences for democracy. The Forum, 13(3), 375–394. [Google Scholar] [CrossRef]
- Jost, J. T., Glaser, J., Kruglanski, A. W., & Sulloway, F. J. (2003). Political conservatism as motivated social cognition. Psychological Bulletin, 129(3), 339–375. [Google Scholar] [CrossRef]
- Kaplan, M. F. (1977). Discussion polarization effects in a modified jury decision paradigm: Informational influences. Sociometry, 40(3), 262. [Google Scholar] [CrossRef]
- Keeling, M., Rohani, P., & Pourbohloul, B. (2008). Modeling infectious diseases in humans and animals: Modeling infectious diseases in humans and animals. Clinical Infectious Diseases, 47(6), 864–865. [Google Scholar] [CrossRef]
- Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 115(772), 700–721. [Google Scholar] [CrossRef]
- Kermack, W. O., & McKendrick, A. G. (1933). Contributions to the mathematical theory of epidemics. III. Further studies of the problem of endemicity. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 141(843), 94–122. [Google Scholar] [CrossRef]
- Kingzette, J., Druckman, J. N., Klar, S., Krupnikov, Y., Levendusky, M., & Ryan, J. B. (2021). How affective polarization undermines support for democratic norms. Public Opinion Quarterly, 85(2), 663–677. [Google Scholar] [CrossRef]
- Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering version 2.3. Engineering, 45, 1051. [Google Scholar]
- Kiymaz, H. (2002). The stock market rumours and stock prices: A test of price pressure and size effect in an emerging market. Applied Financial Economics, 12(7), 469–474. [Google Scholar] [CrossRef]
- Kooshkaki, A. R., Bolouki, S., Etesami, S. R., & Mohebbi, A. (2023). Partisan confidence model for group polarization. IEEE Transactions on Network Science and Engineering, 10(6), 3267–3280. [Google Scholar] [CrossRef]
- Le Bon, G. (2018). Psychologie des foules. Bod-Books on Demand, Dl. [Google Scholar]
- Lee, E. J. (2006). Deindividuation effects on group polarization in computer-mediated communication: The role of group identification, public-self-awareness, and perceived argument quality. Journal of Communication, 57(2), 385–403. [Google Scholar] [CrossRef]
- Lelkes, Y. (2016). Mass polarization: Manifestations and measurements. Public Opinion Quarterly, 80(S1), 392–410. [Google Scholar] [CrossRef]
- Li, Q., Du, Y., Li, Z., Hu, J., Hu, R., Lv, B., & Jia, P. (2021). HK–SEIR model of public opinion evolution based on communication factors. Engineering Applications of Artificial Intelligence, 100, 104192. [Google Scholar] [CrossRef]
- Liu, X., Takeuchi, Y., & Iwami, S. (2008). SVIR epidemic models with vaccination strategies. Journal of Theoretical Biology, 253(1), 1–11. [Google Scholar] [CrossRef]
- Luo, X., Wiles, M., & Raithel, S. (2013). Make the most of a polarizing brand. Harvard Business Review, 91(11), 29–31. [Google Scholar]
- Luskin, R. C., Sood, G., Fishkin, J. S., & Hahn, K. S. (2022). Deliberative distortions? homogenization, polarization, and domination in small group discussions. British Journal of Political Science, 52(3), 1205–1225. [Google Scholar] [CrossRef]
- Maia, H. P., Ferreira, S. C., & Martins, M. L. (2023). Controversy-seeking fuels rumor-telling activity in polarized opinion networks. Chaos, Solitons & Fractals, 169, 113287. [Google Scholar] [CrossRef]
- Martín-Gutíerrez, S., Losada, J. C., & Benito, R. M. (2023). Multipolar social systems: Measuring polarization beyond dichotomous contexts. Chaos, Solitons & Fractals, 169, 113244. [Google Scholar] [CrossRef]
- Matakos, A., Terzi, E., & Tsaparas, P. (2017). Measuring and moderating opinion polarization in social networks. Data Mining and Knowledge Discovery, 31(5), 1480–1505. [Google Scholar] [CrossRef]
- McCoy, J., & Somer, M. (2018). Toward a theory of pernicious polarization and how it harms democracies: Comparative evidence and possible remedies. The Annals of the American Academy of Political and Social Science, 681(1), 234–271. [Google Scholar] [CrossRef]
- McGarty, C., Turner, J. C., Hogg, M. A., David, B., & Wetherell, M. S. (1992). Group polarization as conformity to the prototypical group member. British Journal of Social Psychology, 31(1), 1–19. [Google Scholar] [CrossRef]
- Mocanu, D., Rossi, L., Zhang, Q., Karsai, M., & Quattrociocchi, W. (2015). Collective attention in the age of (mis)information. Computers in Human Behavior, 51, 1198–1204. [Google Scholar] [CrossRef]
- Moscovici, S., & Zavalloni, M. (1969). The group as a polarizer of attitudes. Journal of Personality and Social Psychology, 12(2), 125–135. [Google Scholar] [CrossRef]
- Musco, C., Musco, C., & Tsourakakis, C. E. (2018, April 23–27). Minimizing polarization and disagreement in social networks. 2018 World Wide Web Conference on World Wide Web—WWW’18, Lyon, France. [Google Scholar] [CrossRef]
- Musco, C., Ramesh, I., Ugander, J., & Teal, W. R. (2021). How to quantify polarization in models of opinion dynamics. arXiv, arXiv:2110.11981. [Google Scholar] [CrossRef]
- Myers, D. G., & Lamm, H. (1976). The group polarization phenomenon. Psychological Bulletin, 83(4), 602–627. [Google Scholar] [CrossRef]
- Nordhoy, F. (1962). Group interaction in decision-making under risk [Ph.D. thesis, Massachusetts Institute of Technology, School of Industrial Management]. Available online: https://mit.primo.exlibrisgroup.com/permalink/01MIT_INST/ejdckj/alma990007473980106761 (accessed on 16 January 2025).
- Ohtsubo, Y., Masuchi, A., & Nakanishi, D. (2002). Majority influence process in group judgment: Test of the social judgment scheme model in a group polarization context. Group Processes & Intergroup Relations, 5(3), 249–261. [Google Scholar] [CrossRef]
- Pariser, E. (2011). The filter bubble: What the Internet is hiding from you. Penguin Press. [Google Scholar]
- Phillips, S. C., Uyheng, J., & Carley, K. M. (2023). A high-dimensional approach to measuring online polarization. Journal of Computational Social Science, 6(2), 1147–1178. [Google Scholar] [CrossRef]
- Prem, K., Liu, Y., Russell, T. W., Kucharski, A. J., Eggo, R. M., Davies, N., Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Jit, M., & Klepac, P. (2020). The effect of control strategies that reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China. The Lancet Public Health, 5(5), e261–e270. [Google Scholar] [CrossRef] [PubMed]
- Prior, M. (2013). Media and political polarization. Annual Review of Political Science, 16(1), 101–127. [Google Scholar] [CrossRef]
- Pruitt, D. G. (1971). Choice shifts in group discussion: An introductory review. Journal of Personality and Social Psychology, 20(3), 339–360. [Google Scholar] [CrossRef]
- Pugliese, A. (1990). Population models for diseases with no recovery. Journal of Mathematical Biology, 28(1), 65–82. [Google Scholar] [CrossRef]
- Robison, J., & Moskowitz, R. L. (2019). The group basis of partisan affective polarization. The Journal of Politics, 81(3), 1075–1079. [Google Scholar] [CrossRef]
- Sanders, G. S., & Baron, R. S. (1977). Is social comparison irrelevant for producing choice shifts? Journal of Experimental Social Psychology, 13(4), 303–314. [Google Scholar] [CrossRef]
- Schelling, T. C. (1971). Dynamic models of segregation. The Journal of Mathematical Sociology, 1(2), 143–186. [Google Scholar] [CrossRef]
- Schmidt, A. L., Zollo, F., Scala, A., Betsch, C., & Quattrociocchi, W. (2018). Polarization of the vaccination debate on Facebook. Vaccine, 36(25), 3606–3612. [Google Scholar] [CrossRef]
- Semaan, B. C., Robertson, S. P., Douglas, S., & Maruyama, M. (2014, February 15–19). Social media supporting political deliberation across multiple public spheres: Towards depolarization. 17th ACM Conference on Computer Supported Cooperative Work & Social Computing (pp. 1409–1421), Baltimore, MA, USA. [Google Scholar] [CrossRef]
- Shi, F., Teplitskiy, M., Duede, E., & Evans, J. A. (2019). The wisdom of polarized crowds. Nature Human Behaviour, 3(4), 329–336. [Google Scholar] [CrossRef] [PubMed]
- Shim, E. (2006). A note on epidemic models with infective immigrants and vaccination. Mathematical Biosciences and Engineering, 3(3), 557–566. [Google Scholar] [CrossRef]
- Sia, C. L., Tan, B. C. Y., & Wei, K. K. (2002). Group polarization and computer-mediated communication: Effects of communication cues, social presence, and anonymity. Information Systems Research, 13(1), 70–90. [Google Scholar] [CrossRef]
- Spiegel, U., Tavor, T., & Templeman, J. (2010). The effects of rumours on financial market efficiency. Applied Economics Letters, 17(15), 1461–1464. [Google Scholar] [CrossRef]
- Spohr, D. (2017). Fake news and ideological polarization: Filter bubbles and selective exposure on social media. Business Information Review, 34(3), 150–160. [Google Scholar] [CrossRef]
- Stoner, J. A. F. (1961). A comparison of individual and group decisions involving risk [Ph.D. thesis, Massachusetts Institute of Technology, School of Industrial Management]. Available online: http://dspace.mit.edu/handle/1721.1/11330 (accessed on 16 January 2025).
- Stoner, J. A. F. (1968). Risky and cautious shifts in group decisions: The influence of widely held values. Journal of Experimental Social Psychology, 4(4), 442–459. [Google Scholar] [CrossRef]
- Sunstein, C. R. (2001). Republic.com. Princeton University Press. [Google Scholar]
- Sunstein, C. R. (2006). Infotopia. Oxford University Press. [Google Scholar]
- Sznajd-Weron, K., & Sznajd, J. (2000). Opinion evolution in closed community. International Journal of Modern Physics C, 11(6), 1157–1165. [Google Scholar] [CrossRef]
- Törnberg, P., Andersson, C., Lindgren, K., & Banisch, S. (2021). Modeling the emergence of affective polarization in the social media society. PLoS ONE, 16(10), e0258259. [Google Scholar] [CrossRef]
- Tucker, J., Guess, A., Barbera, P., Vaccari, C., Siegel, A., Sanovich, S., Stukal, D., & Nyhan, B. (2018). Social media, political polarization, and political disinformation: A review of the scientific literature. SSRN Electronic Journal. [Google Scholar] [CrossRef]
- Van Bavel, J. J., Rathje, S., Harris, E., Robertson, C., & Sternisko, A. (2021). How social media shapes polarization. Trends in Cognitive Sciences, 25(11), 913–916. [Google Scholar] [CrossRef]
- Vicario, M. D., Quattrociocchi, W., Scala, A., & Zollo, F. (2019). Polarization and fake news. ACM Transactions on the Web, 13(2), 1–22. [Google Scholar] [CrossRef]
- Vinokur, A. (1969). Distribution of initial risk levels and group decisions involving risk. Journal of Personality and Social Psychology, 13(3), 207–214. [Google Scholar] [CrossRef]
- Vinokur, A., & Burnstein, E. (1978). Novel argumentation and attitude change: The case of polarization following group discussion. European Journal of Social Psychology, 8(3), 335–348. [Google Scholar] [CrossRef]
- Wallace, P. M. (1997). Psych online 97. WCB/McGraw-Hill. [Google Scholar]
- Wallach, M. A., Kogan, N., & Bem, D. J. (1964). Diffusion of responsibility and level of risk taking in groups. The Journal of Abnormal and Social Psychology, 68(3), 263–274. [Google Scholar] [CrossRef] [PubMed]
- Wang, C., Koh, J., Cheong, K. H., & Xie, N. (2019). Progressive information polarization in a complex-network entropic social dynamics model. IEEE Access, 7, 35394–35404. [Google Scholar] [CrossRef]
- Wang, Q., Yang, X., & Zhou, G. (2012, August 7–8). The effect of group arguments on commercial rumor spreading in Chinese online discussion forum. 14th Annual International Conference on Electronic Commerce (Vol. 45, pp. 335–336), Singapore. [Google Scholar] [CrossRef]
- Wang, W., Liu, Q., Liang, J., Hu, Y., & Zhou, T. (2019). Coevolution spreading in complex networks. Physics Reports, 820, 1–51. [Google Scholar] [CrossRef] [PubMed]
- Wang, X., & Song, Y. (2020). Viral misinformation and echo chambers: The diffusion of rumors about genetically modified organisms on social media. Internet Research, 30(5), 1547–1564. [Google Scholar] [CrossRef]
- Whyte, G. (1993). Escalating commitment in individual and group decision making: A prospect theory approach. Organizational Behavior and Human Decision Processes, 54(3), 430–455. [Google Scholar] [CrossRef]
- Wu, Y., Li, L., Yu, Q., Gan, J., & Zhang, Y. (2023). Strategies for reducing polarization in social networks. Chaos Solitons & Fractals, 167, 113095. [Google Scholar] [CrossRef]
- Wu, Y., Li, W., Li, Y., Chen, Q., Liu, M., & Li, Y. (2024). Alleviating negative group polarization with the aid of social bots. Physica a Statistical Mechanics and Its Applications, 644, 129804. [Google Scholar] [CrossRef]
- Wuestenenk, N., van Tubergen, F., & Stark, T. H. (2023). The influence of group membership on online expressions and polarization on a discussion platform: An experimental study. New Media & Society, 27(1), 1. [Google Scholar] [CrossRef]
- Xing, Y., Zhang, J. Z., Storey, V. C., & Koohang, A. (2024). Diving into the divide: A systematic review of cognitive bias-based polarization on social media. Journal of Enterprise Information Management, 37(1), 259–287. [Google Scholar] [CrossRef]
- Xu, H., Li, Z., Guan, A., Xu, M., & Wang, B. (2023). Opinion-Climate-Based Hegselmann-Krause dynamics. Pattern Recognition Letters, 167, 9–17. [Google Scholar] [CrossRef]
- Yarchi, M., Baden, C., & Kligler-Vilenchik, N. (2020). Political polarization on the digital sphere: A cross-platform, over-time analysis of interactional, positional, and affective polarization on social media. Political Communication, 38(1), 1–42. [Google Scholar] [CrossRef]
- Yilmaz, K. E., Osman, A., & Hussain, S. A. (2024). From tweets to tensions: Exploring the roots of political polarization in Turkish constitutional referendum. Journal of Information Technology & Politics, 22(3), 340–356. [Google Scholar] [CrossRef]
- Yin, F., She, Y., Wang, J., Wu, Y., & Wu, J. (2023). Modeling and analyzing information propagation evolution integrating internal and external influences. Advanced Theory and Simulations, 7(3), 2300845. [Google Scholar] [CrossRef]
- Yuan, J., Shi, J., Wang, J., & Liu, W. (2022). Modelling network public opinion polarization based on SIR model considering dynamic network structure. Alexandria Engineering Journal, 61(6), 4557–4571. [Google Scholar] [CrossRef]
Theory | Core Assumption | Explanation of Group Polarization | Representative Literature Support |
---|---|---|---|
Persuasive argument theory | Individuals are more susceptible to more persuasive arguments to change their opinions, and the persuasiveness of the argument is determined by validity or acceptability and novelty. | Studies have shown that when individuals exhibit a bias toward a particular direction, they tend to provide additional arguments supporting this direction, thereby reinforcing the initial inclination, which leads to group polarization. | (Vinokur, 1969; Burnstein et al., 1971; Vinokur & Burnstein, 1978; Kaplan, 1977; Sia et al., 2002; Fu & Zhang, 2016) |
Social comparison theory | Individuals evaluate themselves by comparing themselves with others and then adjust their behavior to meet society’s expectations of the individual. | Studies have shown that individuals compare their opinions with those of others and adjust their opinions to be more in line with the prevailing direction, expressing their opinions more strongly when they find the same opinions, which leads to group polarization. | (Festinger, 1954; Brown, 1965; Sanders & Baron, 1977; Sia et al., 2002) |
Social identity theory | Individuals develop specific attitudes and behaviors based on their social identity to enhance a sense of identity and belonging. | Studies have shown that individuals tend to accept and reinforce the dominant opinions of the group in order to maintain and enhance group identity, suggesting that the formation of group identity is driven by socialization rather than rational thinking, which leads to group polarization. | (Jost et al., 2003; Huddy et al., 2015; Törnberg et al., 2021; Wuestenenk et al., 2023) |
Social norm theory | Social norms are the common expectations of group members regarding behavior, attitudes, and values. Individual behavior is constrained by these social norms. | Research has shown that individuals fear social isolation, so they have to change their opinions to match those of the group, which leads to group polarization. | (Glynn & Noelle-Neumann, 1986) |
Self-categorization theory | Individuals categorize themselves into appropriate groups based on the similarities between self and group and adjust their opinions to fit the characteristics of the group to which they belong. | Studies have shown that individuals tend to adjust their opinions to align with those of their reference group, with some individuals categorizing themselves as belonging to more extreme factions within the group, which leads to group polarization. | (Abrams et al., 1990; McGarty et al., 1992; Hogg & Reid, 2006) |
Information influence theory | Individuals facing uncertainty rely on surrounding information for their decisions and behaviors, especially when the information is coherent. | Research has shown that individuals tend to accept and disseminate the viewpoints within the group that are information-rich in order to quickly acquire information and make decisions, thereby intensifying homogeneity, which leads to group polarization. | (Myers & Lamm, 1976) |
Research Area | Research Theme | Positive Impact | Negative Impact |
---|---|---|---|
Politics | Political position | Increase individual trust in institutions and their representatives (Johnson et al., 2017). | Erupt into radicalism or civil war (Fershtman, 1997); Reduces people’s rationality significantly (Druckman et al., 2013); Worsen the relationship between the party and the people and intensify conflicts and divisions (Robison & Moskowitz, 2019; Brum et al., 2022). |
Public policy | NA | Damage the government’s image (Yuan et al., 2022); Reduce citizens’ trust and participation in the democratic process (Jones, 2015; McCoy & Somer, 2018). | |
Ideology | NA | Individuals are manipulated by opinion leaders to mask self-awareness (Bekafigo et al., 2019); Reduce the diversity of perspectives in a democratic system (Benson, 2023). | |
Society | Public opinion dissemination | NA | Contribute to the spread of falsehoods and misinformation (Tucker et al., 2018; Vicario et al., 2019; Maia et al., 2023); Limit the influence of social media providing accurate information (Schmidt et al., 2018); Public discussions become disorderly and chaotic, and even lead to cyber violence (J. Jiang et al., 2020). |
Social stabilization | Increased focus on social issues and formation of cohesive groups on issues of consensus (smoking cessation, alcoholism, charitable giving, etc.) (El-Shinnawy & Vinze, 1998). | Exacerbate racial prejudice (Sunstein, 2001); Generates individual feelings of hatred and exclusion of potentially fair participants, affecting the normal order of society (X. Wang & Song, 2020); Increase inter-group conflict and decreased social cohesion (Iyengar et al., 2019; Kingzette et al., 2021). | |
Economics | Economic order | NA | Manipulate the financial market (Kiymaz, 2002; Spiegel et al., 2010). |
Company profits | Enhance customer enthusiasm and increase revenue (Luo et al., 2013) | Increase escalation of investment in failing business ventures (Brockner, 1992; Whyte, 1993); Negative reviews damage reputation and long-term profits (Dai et al., 2022). | |
Culture | Values | NA | Interfere with value judgments and value choices (Ohtsubo et al., 2002); Dissolve the moral consensus (Gonçalves-Segundo, 2022). |
Outcomes | Produce higher-quality articles and generate group wisdom (Shi et al., 2019). | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, W.; Zhu, R.; Liu, S.; Lu, X.; Li, B. A Review of Group Polarization Research from a Dynamics Perspective. Journal. Media 2025, 6, 144. https://doi.org/10.3390/journalmedia6030144
Fu W, Zhu R, Liu S, Lu X, Li B. A Review of Group Polarization Research from a Dynamics Perspective. Journalism and Media. 2025; 6(3):144. https://doi.org/10.3390/journalmedia6030144
Chicago/Turabian StyleFu, Wenxuan, Renqi Zhu, Shuo Liu, Xin Lu, and Bo Li. 2025. "A Review of Group Polarization Research from a Dynamics Perspective" Journalism and Media 6, no. 3: 144. https://doi.org/10.3390/journalmedia6030144
APA StyleFu, W., Zhu, R., Liu, S., Lu, X., & Li, B. (2025). A Review of Group Polarization Research from a Dynamics Perspective. Journalism and Media, 6(3), 144. https://doi.org/10.3390/journalmedia6030144