Energy Performance Optimization in a Condensing Boiler †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- IEA Energy Efficiency 2018—Analysis and Outlooks to 2040; Sixth Edition in the IEA Market Report Series; IEA: Paris, France, 2018; pp. 1–143. [CrossRef]
- Horak, J.; Kubonova, L.; Krpec, K.; Hopan, F.; Kubesa, P.; Motyka, O.; Laciok, V.; Dej, M.; Ochodek, T.; Placha, D. PAH emissions from old and new types of domestic hot water boilers. Environ. Pollut. 2017, 225, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Boulahlib, M.S.; Medaerts, F.; Boukhalfa, M.A. Experimental study of a domestic boiler using hydrogen methane blend and fuel-rich staged combustion. Int. J. Hydrog. Energy 2021, in press. [Google Scholar] [CrossRef]
- Kuczyński, S.; Łaciak, M.; Szurlej, A.; Włodek, T. Impact of Liquefied Natural Gas Composition Changes on Methane Number as a Fuel Quality Requirement. Energies 2020, 13, 5060. [Google Scholar] [CrossRef]
- Smith, R. Chemical Process Design and Integration, 2nd ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Poling, B.E.; Prausnitz, J.M.; O’Connell, J.P. The Propierties of Gases and Liquids. McGraw Hill Professional, 2000. Available online: https://www.researchgate.net/file.PostFileLoader.html?id=576b60dc3d7f4b3e0b1acf84&assetKey=AS%3A375993815584769%401466655319665 (accessed on 12 October 2021).
Parameter | Measured Value |
---|---|
Instant exhaust gases temperature | 52.5 °C |
Average variation | 30–56.8 °C |
Air temperature | 12.4 °C |
Performance | 99.1% |
Excess air | 1.27 |
Losses (%) | 0.9% |
[CO2] | 9.41% |
[O2] | 4.4% |
[CO] | 68 ppm |
Procedure | Excess Air | Tp,s (°C) | [O2] %vol. | [CO2] %vol. | Condensed Water (g/Nm3) | (%) |
---|---|---|---|---|---|---|
Theoretical model | 1.27 | 40 | 4.46% | 8.56% | 864.64 | 99.58% |
Experimental results | 1.27 | 30–56.8 | 4.4% | 9.41% | 840 | 99.10% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Cheliz, D.; Velasco-Gómez, E.; Peral-Andrés, J.; Tejero-González, A. Energy Performance Optimization in a Condensing Boiler. Environ. Sci. Proc. 2021, 9, 6. https://doi.org/10.3390/environsciproc2021009006
Fernández-Cheliz D, Velasco-Gómez E, Peral-Andrés J, Tejero-González A. Energy Performance Optimization in a Condensing Boiler. Environmental Sciences Proceedings. 2021; 9(1):6. https://doi.org/10.3390/environsciproc2021009006
Chicago/Turabian StyleFernández-Cheliz, Diego, Eloy Velasco-Gómez, Juan Peral-Andrés, and Ana Tejero-González. 2021. "Energy Performance Optimization in a Condensing Boiler" Environmental Sciences Proceedings 9, no. 1: 6. https://doi.org/10.3390/environsciproc2021009006
APA StyleFernández-Cheliz, D., Velasco-Gómez, E., Peral-Andrés, J., & Tejero-González, A. (2021). Energy Performance Optimization in a Condensing Boiler. Environmental Sciences Proceedings, 9(1), 6. https://doi.org/10.3390/environsciproc2021009006