Modelling in Human Biometeorology: Spatial-Temporal Analysis of Thermal Indices †
Abstract
:1. Introduction
2. Methods
2.1. Thermal Indices
2.2. Descriptive Analysis of the Urban Heat Island Effects on Meteorological Conditions Based on Beanplots
2.3. RayMan Model
2.4. SkyHelios Model
2.5. Application of the Urban Microscale Models for the Study Area Rieselfeld in Freiburg, Germany
3. Results
3.1. Evaluation of Beanplots for the Assessment of the Bioclimate in Freiburg, Germany
3.2. Assessment of Spatially Resolved Thermal Indices in Freiburg, Germany
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Matzarakis, A. A Note on the Assessment of the Effect of Atmospheric Factors and Components on Humans. Atmosphere 2020, 11, 1283. [Google Scholar] [CrossRef]
- Matzarakis, A. Comments about Urban Bioclimate Aspects for Consideration in Urban Climate and Planning Issues in the Era of Climate Change. Atmosphere 2021, 12, 546. [Google Scholar] [CrossRef]
- Staiger, H.; Laschewski, G.; Matzarakis, A. Selection of appropriate thermal indices for applications in human biometeorological studies. Atmosphere 2019, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- VDI Guideline 3787/Part 2. Environmental meteorology, Methods for the human biometeorological evaluation of climate and air quality for urban and regional planning at regional level: Part I: Climate. In VDI/DIN Handbuch Reinhaltung der Luft, Band 1B: Umweltmeteorologie; Beuth-Verlag: Berlin, Germany, 2008; Volume 2, pp. 1–32. [Google Scholar]
- Fanger, P.O. Thermal Comfort. Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970; p. 244. [Google Scholar]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Sci. Total Environ. 2018, 631–632, 390–406. [Google Scholar] [CrossRef]
- Staiger, H.; Laschewski, G.; Gratz, A. The perceived temperature—A versatile index for the assessment of the human thermal environment. Part A: Scientific basics. Int. J. Biometeorolgy 2012, 56, 165–176. [Google Scholar] [CrossRef]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI--why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-C.; Matzarakis, A. Modified physiologically equivalent temperature—Basics and applications for western European climate. Theor. Appl. Climatol. 2018, 132, 1275–1289. [Google Scholar] [CrossRef]
- Fröhlich, D.; Matzarakis, A. Spatial Estimation of Thermal Indices in Urban Areas—Basics of the SkyHelios Model. Atmosphere 2018, 9, 209. [Google Scholar] [CrossRef] [Green Version]
- Kampstra, P. Beanplot: A boxplot alternative for visual comparison of distributions. J. Stat. Softw. 2008, 28, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Muthers, S.; Matzarakis, A. Use of beanplots in applied climatology A comparison with boxplots. Meteorol. Z. 2010, 19, 641–644. [Google Scholar] [CrossRef]
- Köpke, P.; Schönwiese, C.-D.; Heimann, M.; Kuttler, W. Auswirkungen atmosphärischer Spurenstoffe auf Strahlung und Klima. In Handbuch der Umweltveränderungen und Ökotoxikologie; Springer: Berlin/Heidelberg, Germany, 2000; pp. 297–470. [Google Scholar]
- Matzarakis, A.; De Rocco, M.; Najjar, G. Thermal bioclimate in Strasbourg—the 2003 heat wave. Theor. Appl. Climatol. 2009, 98, 209–220. [Google Scholar] [CrossRef]
- Ketterer, C.; Gangwisch, M.; Frohlich, D.; Matzarakis, A. Comparison of selected approaches for urban roughness determination based on voronoi cells. Int. J. Biometeorol. 2017, 61, 189–198. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; Version 3.5.2; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments--application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matzarakis, A.; Gangwisch, M.; Fröhlich, D. RayMan and SkyHelios Model. In Urban Microclimate Modelling for Comfort and Energy Studies; Palme, M., Salvati, A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 339–361. [Google Scholar]
- Matuschek, O.; Matzarakis, A. Estimation of sky view factor in complex environment as a tool for applied climatological studies. Ber. Des Meteorol. Inst. Der Albert-Ludwigs-Univ. Freibg. 2010, 20, 534–539. [Google Scholar]
- Matzarakis, A.; Matuschek, O. Sky view factor as a parameter in applied climatology rapid estimation by the SkyHelios model. Meteorol. Z. 2011, 20, 39–45. [Google Scholar] [CrossRef]
- Matzarakis, A.; Fröhlich, D. Influence of urban green on human thermal bioclimate-application of thermal indices and micro-scale models. In Proceedings of the International Symposium on Greener Cities for More Efficient Ecosystem Services in a Climate Changing World, Bologna, Italy, 12–15 September 2017; pp. 1–10. [Google Scholar]
- Ogre Development Team. OGRE–Open Source 3D Graphics Engine. Available online: https://www.ogre3d.org/ (accessed on 27 September 2021).
- Röckle, R. Bestimmung der Strömungsverhältnisse im Bereich komplexer Bebauungsstrukturen. Doctoral Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 1990. [Google Scholar]
- Singh, B.; Hansen, B.S.; Brown, M.J.; Pardyjak, E.R. Evaluation of the QUIC-URB fast response urban wind model for a cubical building array and wide building street canyon. Environ. Fluid Mech. 2008, 8, 281–312. [Google Scholar] [CrossRef]
- Gröger, G.; Kolbe, T.H.; Nagel, C.; Häfele, K.-H. OGC City Geography Markup Language (CityGML) Encoding Standard; Institut für Angewandte Informatik (IAI): Eggenstein-Leopoldshafen, Germany, 2012. [Google Scholar]
- Hwang, R.-L.; Lin, T.-P.; Matzarakis, A. Seasonal effects of urban street shading on long-term outdoor thermal comfort. Build. Environ. 2011, 46, 863–870. [Google Scholar] [CrossRef]
- de Abreu-Harbich, L.V.; Labaki, L.C.; Matzarakis, A. Effect of tree planting design and tree species on human thermal comfort in the tropics. Landsc. Urban Plan. 2015, 138, 99–109. [Google Scholar] [CrossRef]
- Santos Nouri, A.; Fröhlich, D.; Matos Silva, M.; Matzarakis, A. The Impact of Tipuana tipu Species on Local Human Thermal Comfort Thresholds in Different Urban Canyon Cases in Mediterranean Climates: Lisbon, Portugal. Atmosphere 2018, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, D.; Gangwisch, M.; Matzarakis, A. Effect of radiation and wind on thermal comfort in urban environments—Application of the RayMan and SkyHelios model. Urban Clim. 2019, 27, 1–7. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matzarakis, A.; Gangwisch, M.; Herbert, T. Modelling in Human Biometeorology: Spatial-Temporal Analysis of Thermal Indices. Environ. Sci. Proc. 2021, 8, 28. https://doi.org/10.3390/ecas2021-10297
Matzarakis A, Gangwisch M, Herbert T. Modelling in Human Biometeorology: Spatial-Temporal Analysis of Thermal Indices. Environmental Sciences Proceedings. 2021; 8(1):28. https://doi.org/10.3390/ecas2021-10297
Chicago/Turabian StyleMatzarakis, Andreas, Marcel Gangwisch, and Tim Herbert. 2021. "Modelling in Human Biometeorology: Spatial-Temporal Analysis of Thermal Indices" Environmental Sciences Proceedings 8, no. 1: 28. https://doi.org/10.3390/ecas2021-10297
APA StyleMatzarakis, A., Gangwisch, M., & Herbert, T. (2021). Modelling in Human Biometeorology: Spatial-Temporal Analysis of Thermal Indices. Environmental Sciences Proceedings, 8(1), 28. https://doi.org/10.3390/ecas2021-10297