Moisture Sources for the Explosive Cyclogenesis of Extratropical Cyclone Miguel (2019) through a Lagrangian Approach †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. FLEXPART Simulations
2.3. Trajectory of the Explosive Cyclogenesis Miguel and Characteristic
2.4. Lagrangian Moisture Budget Diagnostic
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leckebusch, G.C.; Ulbrich, U. On the relationship between cyclones and extreme windstorm events over Europe under climate change. Glob. Planet. Chang. 2004, 44, 181–193. [Google Scholar] [CrossRef]
- Pfahl, S.; Wernli, H. Quantifying the Relevance of Cyclones for Precipitation Extremes. J. Clim. 2012, 25, 6770–6780. [Google Scholar] [CrossRef]
- Reale, M.; Lionello, P. Synoptic climatology of winter intense precipitation events along the Mediterranean coasts. Nat. Hazards Earth Syst. Sci. 2013, 13, 1707–1722. [Google Scholar] [CrossRef]
- Pfahl, S. Characterising the relationship between weather extremes in Europe and synoptic circulation features. Nat. Hazards Earth Syst. Sci. 2014, 14, 1461–1475. [Google Scholar] [CrossRef] [Green Version]
- Raveh-Rubin, S.; Catto, J.L. Climatology and dynamics of the link between dry intrusions and cold fronts during winter, Part II: Front-centred perspective. Clim. Dyn. 2019, 53, 1893–1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowdy, A.J.; Catto, J.L. Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chang, E.K.M.; Lee, S.; Swanson, K.L. Storm Track Dynamics. J. Clim. 2002, 15, 2163–2183. [Google Scholar] [CrossRef] [Green Version]
- Hawcroft, M.K.; Shaffrey, L.C.; Hodges, K.I.; Dacre, H.F. How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Ekrem, P.A. NAWDEX Case Study: Water Vapor Transport in Atmospheric Rivers and Quantifying Hand Over of Moisture between Extratropical Cyclones. Master’s Thesis, University of Bergen, Bergen, Norway, 25 September 2020. [Google Scholar]
- Zhao, Y.; Fu, L.; Yang, C.-F.; Chen, X.-F. Case Study of a Heavy Snowstorm Associated with an Extratropical Cyclone Featuring a Back-Bent Warm Front Structure. Atmosphere 2020, 11, 1272. [Google Scholar] [CrossRef]
- Sodemann, H.; Stohl, A. Moisture Origin and Meridional Transport in Atmospheric Rivers and Their Association with Mul-tiple Cyclones. Mon. Wea. Rev. 2013, 141, 2850–2868. [Google Scholar] [CrossRef] [Green Version]
- Ralph, F.M.; Neiman, P.J.; Wick, G.A. Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev. 2004, 132, 1721–1745. [Google Scholar] [CrossRef] [Green Version]
- Bao, J.W.; Michelson, S.A.; Neiman, P.J.; Ralph, F.M.; Wilczak, J.M. Interpretation of Enhanced Integrated Water Vapor Bands Associated with Extratropical Cyclones: Their Formation and Connection to Tropical Moisture. Mon. Weather. Rev. 2006, 134, 1063–1080. [Google Scholar] [CrossRef]
- Neiman, P.J.; Ralph, F.M.; Wick, G.A.; Lundquist, J.D.; Dettinger, M.D. Meteorological Characteristics and Overland Precipitation Impacts of Atmospheric Rivers Affecting the West Coast of North America Based on Eight Years of SSM/I Satellite Observations. J. Hydrometeorol. 2008, 9, 22–47. [Google Scholar] [CrossRef]
- Dacre, H.F.; Clark, P.A.; Martínez-Alvarado, O.; Stringer, M.A.; Lavers, D.A. How Do Atmospheric Rivers Form? Bull. Am. Meteorol. Soc. 2015, 96, 1243–1255. [Google Scholar] [CrossRef]
- Gimeno, L.; Dominguez, F.; Nieto, R.; Trigo, R.; Drumond, A.; Reason, C.J.; Taschetto, A.S.; Ramos, A.M.; Kumar, R.; Marengo, J. Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annu. Rev. Environ. Resour. 2016, 41, 117–141. [Google Scholar] [CrossRef] [Green Version]
- Wernli, B.H.; Davies, H.C. A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Q. J. R. Meteorol. Soc. 1997, 123, 467–489. [Google Scholar] [CrossRef]
- Stohl, A.; James, P.A. Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeorol. 2004, 5, 656–678. [Google Scholar] [CrossRef]
- Hénin, R.; Ramos, A.M.; Pinto, J.G.; Liberato, M.L.R. A ranking of concurrent precipitation and wind events for the Iberian Peninsula. Int. J. Clim. 2021, 41, 1421–1437. [Google Scholar] [CrossRef]
- Eiras-Barca, J.; Lorenzo, N.; Taboada, J.; Robles, A.; Miguez-Macho, G. On the relationship between atmospheric rivers, weather types and floods in Galicia (NW Spain). Nat. Hazards Earth Syst. Sci. 2018, 18, 1633–1645. [Google Scholar] [CrossRef] [Green Version]
- Eiras-Barca, J.; Dominguez, F.; Hu, H.; Garaboa-Paz, D.; Miguez-Macho, G. Evaluation of the moisture sources in two extreme landfalling atmospheric river events using an Eulerian WRF tracers tool. Earth Syst. Dyn. 2017, 8, 1247–1261. [Google Scholar] [CrossRef] [Green Version]
- Gimeno, L.; Stohl, A.; Trigo, R.; Dominguez, F.; Yoshimura, K.; Yu, L.; Drumond, A.; Durán-Quesada, A.M.; Nieto, R. Oceanic and terrestrial sources of continental precipitation. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Nieto, R.; Trigo, R.M.; Gimeno, L. A Lagrangian identification of major sources of Sahel moisture. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Drumond, A.; Nieto, R.; Gimeno, L.; Ambrizzi, T. A Lagrangian identification of major sources of moisture over Central Brazil and La Plata Basin. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Gimeno, L.; Drumond, A.; Nieto, R.; Trigo, R.; Stohl, A. On the origin of continental precipitation. Geophys. Res. Lett. 2010, 37, 13804. [Google Scholar] [CrossRef]
- Durán-Quesada, A.; Reboita, M.; Gimeno, L. Precipitation in tropical America and the associated sources of moisture: A short review. Hydrol. Sci. J. 2012, 57, 612–624. [Google Scholar] [CrossRef]
- Gimeno, L.; Nieto, R.; Drumond, A.; Castillo, R.; Trigo, R. Influence of the intensification of the major oceanic moisture sources on continental precipitation. Geophys. Res. Lett. 2013, 40, 1443–1450. [Google Scholar] [CrossRef]
- Drumond, A.; Marengo, J.; Ambrizzi, T.; Nieto, R.; Moreira, L.; Gimeno, L. The role of the Amazon Basin moisture in the atmospheric branch of the hydrological cycle: A Lagrangian analysis. Hydrol. Earth Syst. Sci. 2014, 18, 2577–2598. [Google Scholar] [CrossRef] [Green Version]
- Ramos, A.M.; Nieto, R.; Tomé, R.; Gimeno, L.; Trigo, R.; Liberato, M.L.R.; Lavers, D.A. Atmospheric rivers moisture sources from a Lagrangian perspective. Earth Syst. Dyn. 2016, 7, 371–384. [Google Scholar] [CrossRef] [Green Version]
- Gozzo, L.F.; Da Rocha, R.P.; Gimeno, L.; Drumond, A. Climatology and numerical case study of moisture sources associated with subtropical cyclogenesis over the southwestern Atlantic Ocean. J. Geophys. Res. Atmos. 2017, 122, 5636–5653. [Google Scholar] [CrossRef]
- Ordoñez, P.; Nieto, R.; Gimeno, L.; Ribera, P.; Gallego, D.; Ochoa-Moya, C.A.; Quintanar, A. Climatological moisture sources for the Western North American Monsoon through a Lagrangian approach: Their influence on precipitation intensity. Earth Syst. Dyn. 2019, 10, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Zhao, N.; Manda, A.; Guo, X.; Kikuchi, K.; Nasuno, T.; Nakano, M.; Zhang, Y.; Wang, B. A Lagrangian View of Moisture Transport Related to the Heavy Rainfall of July 2020 in Japan: Importance of the Moistening Over the Subtropical Regions. Geophys. Res. Lett. 2021, 48, e2020GL091441. [Google Scholar] [CrossRef]
- Agencia Estatal de Meteorología. Available online: https://www.aemet.es/es/web/conocermas/borrascas/2018-2019/estudios_e_impactos/miguel (accessed on 12 March 2021).
- Pinto, J.G.; Zacharias, S.; Fink, A.H.; Leckebusch, G.C.; Ulbrich, U. Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Clim. Dyn. 2009, 32, 711–737. [Google Scholar] [CrossRef] [Green Version]
- Ulbrich, U.; Leckebusch, G.C.; Pinto, J.G. Extra-tropical cyclones in the present and future climate: A review. Theor. Appl. Clim. 2009, 96, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Raible, C.C.; Messmer, M.; Lehner, F.; Stocker, T.F.; Blender, R. Extratropical cyclone statistics during the last millennium and the 21st century. Clim. Past 2018, 14, 1499–1514. [Google Scholar] [CrossRef] [Green Version]
- Catto, J.L.; Ackerley, D.; Booth, J.; Champion, A.J.; Colle, A.B.; Pfahl, S.; Pinto, J.; Quinting, J.; Seiler, C. The future of mid-latitude cyclones. Curr. Clim. Change Rep. 2019, 5, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Naray, A. Estudio de la Excepcionalmente Tardía e Inusual Ciclogénesis Explosiva Miguel. Master’s Thesis, Universidad Com-plutense de Madrid, Madrid, Spain, 13 June 2020. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Stohl, A.; Forster, C.; Frank, A.; Seibert, P.; Wotawa, G. Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys. Discuss. 2005, 5, 2461–2474. [Google Scholar] [CrossRef] [Green Version]
- Blender, R.; Fraedrich, K.; Lunkeit, F. Identification of cyclone-track regimes in the North Atlantic. Q. J. R. Meteor. Soc. 1997, 123, 727–741. [Google Scholar] [CrossRef]
- Pepler, A.; Dowdy, A. A Three-Dimensional Perspective on Extratropical Cyclone Impacts. J. Clim. 2020, 33, 5635–5649. [Google Scholar] [CrossRef] [Green Version]
- Sanders, F.; Gyakum, J.R. Synoptic-Dynamic Climatology of the “Bomb”. Mon. Wea. Rev. 1980, 108, 1589–1606. [Google Scholar] [CrossRef] [Green Version]
- Numaguti, A. Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an at-mospheric general circulation model. J. Geophys. Res. 1999, 104, 1957–1972. [Google Scholar] [CrossRef]
- van der Ent, R.J.; Tuinenburg, O.A. The residence time of water in the atmosphere revisited. Hydrol. Earth Syst. Sci. 2017, 21, 779–790. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coll-Hidalgo, P.; Pérez-Alarcón, A.; Fernández-Alvarez, J.C.; Nieto, R.; Gimeno, L. Moisture Sources for the Explosive Cyclogenesis of Extratropical Cyclone Miguel (2019) through a Lagrangian Approach. Environ. Sci. Proc. 2021, 8, 19. https://doi.org/10.3390/ecas2021-10331
Coll-Hidalgo P, Pérez-Alarcón A, Fernández-Alvarez JC, Nieto R, Gimeno L. Moisture Sources for the Explosive Cyclogenesis of Extratropical Cyclone Miguel (2019) through a Lagrangian Approach. Environmental Sciences Proceedings. 2021; 8(1):19. https://doi.org/10.3390/ecas2021-10331
Chicago/Turabian StyleColl-Hidalgo, Patricia, Albenis Pérez-Alarcón, José Carlos Fernández-Alvarez, Raquel Nieto, and Luis Gimeno. 2021. "Moisture Sources for the Explosive Cyclogenesis of Extratropical Cyclone Miguel (2019) through a Lagrangian Approach" Environmental Sciences Proceedings 8, no. 1: 19. https://doi.org/10.3390/ecas2021-10331
APA StyleColl-Hidalgo, P., Pérez-Alarcón, A., Fernández-Alvarez, J. C., Nieto, R., & Gimeno, L. (2021). Moisture Sources for the Explosive Cyclogenesis of Extratropical Cyclone Miguel (2019) through a Lagrangian Approach. Environmental Sciences Proceedings, 8(1), 19. https://doi.org/10.3390/ecas2021-10331