Using Thermal Neutron Imaging in Forest Products Research †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jakes, J.E.; Arzola, X.; Bergman, R.; Ciesielski, P.; Hunt, C.G.; Rahbar, N.; Tshabalala, M.; Wiedenhoeft, A.C.; Zelinka, S.L. Not Just Lumber—Using Wood in the Sustainable Future of Materials, Chemicals, and Fuels. JOM 2016, 68, 2395–2404. [Google Scholar] [CrossRef]
- Langan, P.; Evans, B.R.; Foston, M.; Heller, W.T.; O’Neill, H.; Petridis, L.; Pingali, S.V.; Ragauskas, A.J.; Smith, J.C.; Urban, V.S.; et al. Neutron Technologies for Bioenergy Research. Ind. Biotechnol. 2012, 8, 209–216. [Google Scholar] [CrossRef]
- Kardjilov, N.; Festa, G. (Eds.) Neutron Methods for Archaeology and Cultural Heritage; Part of the Neutron Scattering Applications and Techniques Book Series; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-33161-4. [Google Scholar] [CrossRef]
- Odin, G.P.; Rouchon, V.; Ott, F.; Malikova, N.; Levitz, P.; Michot, L.J. Neutron imaging investigation of fossil woods: Non-destructive characterization of microstructure and detection of in situ changes as occurring in museum cabinets. Foss. Rec. 2017, 20, 95–103. [Google Scholar] [CrossRef]
- Sonderegger, W.; Hering, S.; Mannes, D.; Vontobel, P.; Lehmann, E.; Niemz, P. Quantitative determination of bound water diffusion in multilayer boards by means of neutron imaging. Eur. J. Wood Wood Prod. 2010, 68, 341–350. [Google Scholar] [CrossRef]
- Sonderegger, W.; Glaunsinger, M.; Mannes, D.; Volkmer, T.; Niemz, P. Investigations into the influence of two different wood coatings on water diffusion determined by means of neutron imaging. Eur. J. Wood Wood Prod. 2015, 73, 793–799. [Google Scholar] [CrossRef]
- Lanvermann, C.; Sanabria, S.J.; Mannes, D.; Niemz, P. Combination of neutron imaging (NI) and digital image correlation (DIC) to determine intra-ring moisture variation in Norway spruce. Holzforschung 2014, 68, 113–122. [Google Scholar] [CrossRef]
- Sedighi Gilani, M.; Abbasion, S.; Lehmann, E.; Carmeliet, J.; Derome, D. Neutron imaging of moisture displacement due to steep temperature gradients in hardwood. Int. J. Therm. Sci. 2014, 81, 1–12. [Google Scholar] [CrossRef]
- Islam, M.N.; Khan, M.A.; Alam, M.K.; Zaman, M.A.; Matsubayashi, M. Study of water absorption behavior in wood plastic composites by using neutron radiography techniques. Polym. Plast. Technol. Eng. 2003, 42, 925–934. [Google Scholar] [CrossRef]
- Mannes, D.; Lehmann, E.; Cherubini, P.; Niemz, P. Neutron imaging versus standard X-ray densitometry as method to measure tree-ring wood density. Trees Struct. Funct. 2007, 21, 605–612. [Google Scholar] [CrossRef]
- Sonderegger, W.; Mannes, D.; Kaestner, A.; Hovind, J.; Lehmann, E. On-line monitoring of hygroscopicity and dimensional changes of wood during thermal modification by means of neutron imaging methods. Holzforschung 2015, 69, 87–95. [Google Scholar] [CrossRef]
- Ossler, F.; Santodonato, L.J.; Warren, J.M.; Finney, C.E.A.; Bilheux, J.C.; Mills, R.A.; Skorpenske, H.D.; Bilheux, H.Z. In situ monitoring of hydrogen loss during pyrolysis of wood by neutron imaging. Proc. Combust. Inst. 2019, 37, 1273–1280. [Google Scholar] [CrossRef]
- Goldstein, I.S.; Jeroski, E.B.; Lund, A.E.; Nielson, J.F.; Weater, J.M. Acetylation of Wood in Lumber Thickness. For. Prod. J. 1961, 11, 363–370. [Google Scholar]
- Ibach, R.E.; Clemons, C.M.; Schumann, R.L. WPCs with Reduced Moisture: Effects of Chemical Modification on Durability in the Laboratory and Field. In Proceedings of the 9th International Conference on Woodfiber-Plastic Composites, Madison, WI, USA, 21–23 May 2007; pp. 259–266. [Google Scholar]
- Ibach, R.E.; Rowell, R.M.; Lee, B.-G. Decay Protection Based on Moisture Exclusion Resulting From Chemical Modification of Wood. In Proceedings of the 5th Pacific Rim Bio-Based Composites Symposium, Canberra, Australia, 10–13 December 2000; pp. 197–204. [Google Scholar]
- Rasband, W.S.; ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA. 1997–2018. Available online: https://imagej.nih.gov/ij/ (accessed on 5 November 2020).
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Kuhara, S.; Kobayashi, K.; Suzuki, S.; Yamada, M.; Senoo, A. Non-destructive tree-ring measurements using a clinical 3T-MRI for archaeology. Dendrochronologia 2019, 57, 125630. [Google Scholar] [CrossRef]
- Carminati, C.; Boillat, P.; Schmid, F.; Vontobel, P.; Hovind, J.; Morgano, M.; Raventos, M.; Siegwart, M.; Mannes, D.; Gruenzweig, C.; et al. Implementation and assessment of the black body bias correction in quantitative neutron imaging. PLoS ONE 2019, 14, e0210300. [Google Scholar] [CrossRef] [PubMed]
- Gnatowski, M.; Ibach, R.; Leung, M.; Sun, G. Magnetic resonance imaging used for the evaluation of water presence in wood plastic composite boards exposed to exterior conditions. Wood Mater. Sci. Eng. 2015, 10, 94–111. [Google Scholar] [CrossRef]
Sample | ||
---|---|---|
Dry | Wet | |
Unmodified Wood | 0.86 (0.15) 1 | 0.92 (0.33) 1 |
0.15 (0.04) 2 | 0.63 (0.21) 2 | |
Acetylated Wood (20% WPG) | 0.71 (0.16) 1 | 0.75 (0.21) 1 |
0.16 (0.07) 2 | 0.60 (0.21) 2 |
Sample | ||
---|---|---|
Dry | Wet | |
Unmodified WPC | 1.18 (0.04) 1 | 1.06 (0.20) 1 |
0.84 (0.07) 2 | 0.77 (0.06) 2 | |
Acetylated WPC | 1.31 (0.24) 1 | 1.12 (0.20) 1 |
0.85 (0.07) 2 | 0.79 (0.05) 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plaza, N.Z.; Ibach, R.E.; Hasburgh, L.E.; Taylor, M. Using Thermal Neutron Imaging in Forest Products Research. Environ. Sci. Proc. 2021, 3, 92. https://doi.org/10.3390/IECF2020-08082
Plaza NZ, Ibach RE, Hasburgh LE, Taylor M. Using Thermal Neutron Imaging in Forest Products Research. Environmental Sciences Proceedings. 2021; 3(1):92. https://doi.org/10.3390/IECF2020-08082
Chicago/Turabian StylePlaza, Nayomi Z., Rebecca E. Ibach, Laura E. Hasburgh, and Michael Taylor. 2021. "Using Thermal Neutron Imaging in Forest Products Research" Environmental Sciences Proceedings 3, no. 1: 92. https://doi.org/10.3390/IECF2020-08082
APA StylePlaza, N. Z., Ibach, R. E., Hasburgh, L. E., & Taylor, M. (2021). Using Thermal Neutron Imaging in Forest Products Research. Environmental Sciences Proceedings, 3(1), 92. https://doi.org/10.3390/IECF2020-08082