Different Temperature and Humidity Responses to the Clear-Cut and the Gap in a Scots Pine Forest: A Study Case in Central Poland †
Abstract
:1. Introduction
2. Study Site, Material and Methods
3. Results
3.1. Temperature
3.2. Humidity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bolibok, L. Regulation of regeneration growth conditions in small clear cuts- the effect of gap parameters on biotic factors influence. Sylwan 2009, 153, 733–744. (In Polish) [Google Scholar] [CrossRef]
- Chen, J.; Franklin, J.F.; Spies, T.A. Contrasting microclimates among clearcut, edge, and interior of old−growth Douglas−fir forest. Agric. For. Meteorol. 1993, 63, 219–237. [Google Scholar] [CrossRef]
- Chojnacka−Ożga, L.; Ożga, W. Thermal conditions in the transitional zone between the forest and the open area. Sylwan 1999, 143, 11–17. (In Polish) [Google Scholar]
- Davies−Colley, R.J.; Payne, G.W.; van Elswijk, M. Microclimate gradients across a forest edge. N. Z. J. Ecol. 2000, 24, 111–121. [Google Scholar]
- Mercer, J.A. Some Effects of Growing Season Soil Moisture and Microclimate on Redwood Seedlings in a Forest Edge and Gap; Humboldt State University: Arcata, CA, USA, 2006. [Google Scholar]
- Chen, J.; Franklin, J. Growing-season microclimate variability within an old-growth Douglas-fir forest. Clim. Res. 1997, 8, 21–34. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Qian, T. A global dataset of palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 2004, 5, 1117–1130. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; Lorenzo-Lacruz, J.; Camarero, J.; López-Moreno, J.I.; Azorin-Molina, C.; Revuelto, J.S.; Morán-Tejeda, E.; Sanchez-Lorenzo, A. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact. 2012, 16, 1–27. [Google Scholar] [CrossRef]
- Behrangi, A.; Loikith, P.C.; Fetzer, E.J.; Nguyen, H.M.; Granger, S.L. Utilizing Humidity and Temperature Data to Advance Monitoring and Prediction of Meteorological Drought. Climate 2015, 3, 999–1017. [Google Scholar] [CrossRef]
- Chojnacka-Ożga, L.; Ożga, W.; Andrzejczyk, T. Air temperature on the clear-cut and the gap. Sylwan 2019, 163, 655–664. (In Polish) [Google Scholar]
- Sherwood, S.; Fu, Q. A Drier Future? Science 2014, 343, 737–739. [Google Scholar] [CrossRef]
- Chojnacka-Ożga, L.; Ożga, W. Air temperature anomalies in experimental forests in Rogów in 1924–2015. Res. Pap. 2018, 79, 37–44. [Google Scholar] [CrossRef]
- Stephens, G.L.; Ellis, T.D. Controls of Global-Mean Precipitation Increases in Global Warming GCM Experiments. J. Clim. 2008, 21, 6141–6155. [Google Scholar] [CrossRef]
- Cook, B.; Smerdon, J.; Seager, R.; Coats, S. Global warming and 21st century drying. Clim. Dyn. 2014, 43, 2607–2627. [Google Scholar] [CrossRef]
- Gray, A.N.; Spies, T.A.; Easter, M.J. Microclimatic and soil moisture responses to gap formation in coastal Douglas-fir forests. Can. J. Res. 2002, 32, 332–343. [Google Scholar] [CrossRef]
- Latif, Z.A.; Blackburn, G.A. The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest. Int. J. Biometeorol. 2009, 54, 119–129. [Google Scholar] [CrossRef]
- Strong, T.F.; Teclaw, R.M.; Zasada, J.C. Monitoring the effects of partial cutting and gap size on microclimate and vegetation responses in northern hardwood forests in Wisconsin. In Proceedings of the National Silviculture Workshop; USDA Forest Service: Warren, PA, USA, 1997; pp. 42–47. [Google Scholar]
- Champlin, T.B.; Kilgo, J.C.; Gumpertz, M.L.; Moorman, C.E. Avian response to microclimate in canopy gaps in a Bottomland Hardwood Forest. Southeast. Nat. 2009, 8, 107–120. [Google Scholar] [CrossRef]
- Van Dam, O. Forest Filled with Gaps: Effects of Gap Size on Water and Nutrient Cycling in Tropical Rain Forest: A Study in Guyana; Publisher Tropenbos-Guyana Programme: Georgetown, Guyana, 2001; 208. [Google Scholar]
- Brooks, R.T.; Kyker-Snowman, T.D. Forest floor temperature and relative humidity following timber harvesting in southern New England, USA. For. Ecol. Manag. 2008, 254, 65–73. [Google Scholar] [CrossRef]
- Chantal, M.; Leinonen, K.; Kuuluvainen, T.; Cescatti, A. Early response of Pinus sylvestris and Picea abies seedlings to an experimental canopy gap in a boreal spruce forest. For. Ecol. Manag. 2003, 173, 321–336. [Google Scholar] [CrossRef]
- Massmann, A.; Gentine, P.; Lin, C. When Does Vapor Pressure Deficit Drive or Reduce Evapotranspiration? J. Adv. Model. Earth Syst. 2019, 11, 3305–3320. [Google Scholar] [CrossRef]
- Restaino, C.M.; Peterson, D.L.; Littell, J. Increased water deficit decreases Douglas fir growth throughout western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 9557–9562. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z.; et al. Faculty Opinions recommendation of Increased atmospheric vapor pressure deficit reduces global vegetation growth. Fac. Opin. Post-Publ. Peer Rev. Biomed. Lit. 2019, 5, 1–12. [Google Scholar] [CrossRef]
- Zhang, Q.; Ficklin, D.L.; Manzoni, S.; Wang, L.; Way, D.; Phillips, R.P.; A Novick, K. Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor pressure deficit. Environ. Res. Lett. 2019, 14, 074023. [Google Scholar] [CrossRef]
Measuring Point | t | SD | tmin | tmax | t | SD | tmin | tmax |
---|---|---|---|---|---|---|---|---|
Spring–Summer | Autumn | |||||||
Forest | 16.0 | 5.17 | 2.9 | 31.5 | 6.4 | 4.63 | −3.9 | 18.7 |
z1 | 15.6 | 6.36 | −0,2 | 36.6 | 5.2 | 4.78 | −5.8 | 17.9 |
z2 | 15.3 | 6.96 | −1.1 | 37.4 | 4.9 | 4.89 | −5.8 | 17.9 |
z3 | 16.1 | 7.96 | −2.0 | 39.7 | 5.1 | 5.31 | −6.8 | 19.4 |
z4 | 16.3 | 7.81 | −1.5 | 38.8 | 5.7 | 5.46 | −6.8 | 20.6 |
g1 | 15.0 | 5.34 | 2.1 | 32.8 | 5.7 | 4.54 | −4.8 | 17.5 |
g2 | 15.6 | 6.34 | 2.0 | 37.9 | 5.5 | 4.57 | −5.3 | 17.1 |
g3 | 17.2 | 7.12 | 3.3 | 41.5 | 6.3 | 4.90 | −4.3 | 20.2 |
Date | Location Where the Frost Occurred | tmin | Time with t < 0 °C | Meteorological Station | ||||
---|---|---|---|---|---|---|---|---|
tmin | tmax | Relative Humidity (%) | Wind Direction | Wind Speed (m/s) | ||||
11.05 | z2, z3 | −0.2 | 0.5 h | 0.2 | 24.5 | 76 | WNW | 1.3 |
15.05 | z1, z2, z3, z4 | −2.0 | 5.0 h | −0.9 | 19.9 | 83 | WSW | 0.3 |
16.05 | z3 | −0.2 | 0.3 h | 0.5 | 24.3 | 72 | ESE | 1.6 |
Measuring Point | Ave. | SD | min | max | Ave. | SD | min | max | |
---|---|---|---|---|---|---|---|---|---|
Spring–Summer | Autumn | ||||||||
e | Forest | 14.4 | 3.53 | 4.7 | 24.9 | 10.2 | 2.80 | 4.3 | 26.2 |
z1 | 14.5 | 4.04 | 4.6 | 30.6 | 10.4 | 3.82 | 3.7 | 34.0 | |
z2 | 14.5 | 4.20 | 5.6 | 29.2 | 10.4 | 3.99 | 3.9 | 34.1 | |
z3 | 14.1 | 3.84 | 4.9 | 26.7 | 10.3 | 3.90 | 3.7 | 32.6 | |
z4 | 14.3 | 3.78 | 6.0 | 27.3 | 10.6 | 3.79 | 3.9 | 32.8 | |
g1 | 14.6 | 4.01 | 5.4 | 26.7 | 10.6 | 3.33 | 4.5 | 36.2 | |
g2 | 14.7 | 4.22 | 6.8 | 28.5 | 10.5 | 3.47 | 4.3 | 35.5 | |
g3 | 14.5 | 3.45 | 5.7 | 25.9 | 9.9 | 2.78 | 4.1 | 25.5 | |
RH | Forest | 77.2 | 20.08 | 20.3 | 100 | 85.9 | 13.60 | 43.8 | 100 |
z1 | 81.1 | 22.29 | 21.3 | 100 | 88.7 | 13.18 | 50.0 | 100 | |
z2 | 81.5 | 20.37 | 24.4 | 100 | 89.1 | 12.59 | 48.1 | 100 | |
z3 | 77.4 | 24.21 | 17.0 | 100 | 86.0 | 13.58 | 43.9 | 100 | |
z4 | 77.8 | 24.31 | 17.4 | 100 | 86.4 | 13.49 | 44.4 | 100 | |
g1 | 87.2 | 16.24 | 25.7 | 100 | 92.5 | 10.78 | 53.8 | 100 | |
g2 | 85.1 | 18.39 | 23.0 | 100 | 91.4 | 11.50 | 51.7 | 100 | |
g3 | 74.5 | 24.02 | 17.0 | 100 | 83.4 | 13.86 | 41.1 | 100 | |
VPD | Forest | 5.5 | 6.52 | 0.0 | 31.1 | 1.6 | 1.94 | 0.0 | 7.6 |
z1 | 5.3 | 7.97 | 0.0 | 37.1 | 1.4 | 1.69 | 0.0 | 6.7 | |
z2 | 5.2 | 7.92 | 0.0 | 44.6 | 1.4 | 1.65 | 0.0 | 6.8 | |
z3 | 7.5 | 11.42 | 0.0 | 55.9 | 1.9 | 2.03 | 0.0 | 8.4 | |
z4 | 7.4 | 11.28 | 0.0 | 55.6 | 2.0 | 2.26 | 0.0 | 9.6 | |
g1 | 3.2 | 4.97 | 0.0 | 26.4 | 0.9 | 1.38 | 0.0 | 5.9 | |
g2 | 4.4 | 7.52 | 0.0 | 50.6 | 1.1 | 1.48 | 0.0 | 6.3 | |
g3 | 8.6 | 12.76 | 0.0 | 67.9 | 2.2 | 2.20 | 0.0 | 9.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chojnacka-Ożga, L.; Ożga, W. Different Temperature and Humidity Responses to the Clear-Cut and the Gap in a Scots Pine Forest: A Study Case in Central Poland. Environ. Sci. Proc. 2021, 3, 74. https://doi.org/10.3390/IECF2020-07998
Chojnacka-Ożga L, Ożga W. Different Temperature and Humidity Responses to the Clear-Cut and the Gap in a Scots Pine Forest: A Study Case in Central Poland. Environmental Sciences Proceedings. 2021; 3(1):74. https://doi.org/10.3390/IECF2020-07998
Chicago/Turabian StyleChojnacka-Ożga, Longina, and Wojciech Ożga. 2021. "Different Temperature and Humidity Responses to the Clear-Cut and the Gap in a Scots Pine Forest: A Study Case in Central Poland" Environmental Sciences Proceedings 3, no. 1: 74. https://doi.org/10.3390/IECF2020-07998
APA StyleChojnacka-Ożga, L., & Ożga, W. (2021). Different Temperature and Humidity Responses to the Clear-Cut and the Gap in a Scots Pine Forest: A Study Case in Central Poland. Environmental Sciences Proceedings, 3(1), 74. https://doi.org/10.3390/IECF2020-07998