Regeneration of Belowground Properties and Nutrient Pools in Soil after Compaction: Response to the Reforestation with Native Tree Species in the Hyrcanian Forest †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Data Collection and Laboratory Analysis
2.4. Statistical Analyses
3. Results
3.1. Litter Properties
3.2. Soil Physio-Chemical Properties
3.3. Soil Biochemical and Biological Properties
4. Discussion
4.1. Litter Properties
4.2. Soil Physio-Chemical Properties
4.3. Soil Physio-Chemical Properties
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cambi, M.; Certini, G.; Neri, F.; Marchi, E. The impact of heavy traffic on forest soils: A review. For. Ecol. Manag. 2015, 338, 124–138. [Google Scholar] [CrossRef]
- Marchi, E.; Chung, W.; Visser, R.; Abbas, D.; Nordfjell, T.; Mederski, P.S.; McEwan, A.; Brink, M.; Laschi, A. Sustainable Forest Operations (SFO): A new paradigm in a changing world and climate. Sci. Total Environ. 2018, 634, 1385–1397. [Google Scholar] [CrossRef] [PubMed]
- Ampoorter, E.; De Schrijver, A.; De Frenne, P.; Hermy, M.; Verheyen, K. Experimental assessment of ecological restoration options for compacted forest soils. Ecol. Eng. 2011, 37, 1734–1746. [Google Scholar] [CrossRef]
- Meyer, C.; Luscher, P.; Schulin, R. Enhancing the regeneration of compacted forest soils by planting black alder in skid lane tracks. Eur. J. For. Res. 2014, 133, 453–465. [Google Scholar] [CrossRef]
- Mohieddinne, H.; Brasseur, B.; Spicher, F.; Gallet-Moron, E.; Buridant, J.; Kobaissi, A.; Horen, H. Physical recovery of forest soil after compaction by heavy machines, revealed by penetration resistance over multiple decades. For. Ecol. Manag. 2019, 449, 117472. [Google Scholar] [CrossRef]
- Horn, R.; Vossbrink, J.; Becker, S. Modern forestry vehicles and their impacts on soil physical properties. Soil Tillage Res. 2004, 79, 207–219. [Google Scholar] [CrossRef]
- Bottinelli, N.; Hallaire, V.; Goutal, N.; Bonnaud, P.; Ranger, J. Impact of heavy traffic on soil macroporosity of two silty forest soils: Initial effect and short-term recovery. Geoderma 2014, 217–218, 10–17. [Google Scholar] [CrossRef]
- Sohrabi, H.; Jourgholami, M.; Tavankar, F.; Venanzi, R.; Picchio, R. Post-harvest evaluation of soil physical properties and natural regeneration growth in steep-slope terrains. Forests 2019, 10, 1034. [Google Scholar] [CrossRef]
- Jourgholami, M.; Ghassemi, T.; Labelle, E.R. Soil physio-chemical and biological indicators to evaluate the restoration of compacted soil following reforestation. Ecol. Indic. 2019, 101, 102–110. [Google Scholar] [CrossRef]
- Picchio, R.; Mercurio, R.; Venanzi, R.; Gratani, L.; Giallonardo, T.; Monaco, A.; Lo Frattaroli, A.R. Strip clear-cutting application and logging typologies for renaturalization of pine afforestation-A case study. Forests 2018, 9, 1–24. [Google Scholar] [CrossRef]
- Sohrabi, H.; Jourgholami, M.; Jafari, M.; Shabanian, N.; Venanzi, R.; Tavankar, F.; Picchio, R. Soil recovery assessment after timber harvesting based on the Sustainable Forest Operation (SFO) perspective in Iranian temperate forests. Sustainability 2020, 12, 2874. [Google Scholar] [CrossRef]
- Goutal, N.; Boivin, P.; Ranger, J. Assessment of the natural recovery rate of soil specific volume following forest soil compaction. Soil Sci. Soc. Am. J. 2012, 76, 1426. [Google Scholar] [CrossRef]
- Flores Fernández, J.L.; Rubin, L.; Hartmann, P.; Puhlmann, H.; von Wilpert, K. Initial recovery of soil structure of a compacted forest soil can be enhanced by technical treatments and planting. For. Ecol. Manag. 2019, 431, 54–62. [Google Scholar] [CrossRef]
- Jourgholami, M.; Fathi, K.; Labelle, E.R. Effects of litter and straw mulch amendments on compacted soil properties and Caucasian alder (Alnus subcordata) growth. New For. 2020, 51, 349–365. [Google Scholar] [CrossRef]
- Jourgholami, M.; Khoramizadeh, A.; Zenner, E.K. Effects of soil compaction on seedling morphology, growth, and architecture of chestnut-leaved oak (Quercus castaneifolia). iForest 2016, 10, 145–153. [Google Scholar] [CrossRef]
- Cambi, M.; Hoshika, Y.; Mariotti, B.; Paoletti, E.; Picchio, R.; Venanzi, R.; Marchi, E. Compaction by a forest machine affects soil quality and Quercus robur L. seedling performance in an experimental field. For. Ecol. Manag. 2017, 384, 406–414. [Google Scholar] [CrossRef]
- Diao, M.; Yang, K.; Zhu, J.; Li, M.; Xu, S. Native broad-leaved tree species play key roles on maintaining soil chemical and microbial properties in a temperate secondary forest, Northeast China. For. Ecol. Manag. 2020, 462, 117971. [Google Scholar] [CrossRef]
- Mayer, M.; Prescott, C.E.; Abaker, W.E.A.; Augusto, L.; Cécillon, L.; Ferreira, G.W.D.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.-P.; et al. Tamm review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 2020, 466, 118127. [Google Scholar] [CrossRef]
- Jourgholami, M.; Labelle, E.R.; Feghhi, J. Efficacy of leaf litter mulch to mitigate runoff and sediment yield following mechanized operations in the Hyrcanian mixed forests. J. Soils Sediments 2019, 19, 2076–2088. [Google Scholar] [CrossRef]
- Jourgholami, M.; Labelle, E.R. Effects of plot length and soil texture on runoff and sediment yield occurring on machine-trafficked soils in a mixed deciduous forest. Ann. For. Sci. 2020, 77, 19. [Google Scholar] [CrossRef]
- Sayer, E.J. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol. Rev. 2006, 81, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Jourgholami, M.; Nasirian, A.; Labelle, E.R. Ecological restoration of compacted soil following the application of different leaf litter mulches on the skid trail over a five-year period. Sustainability 2018, 10, 2148. [Google Scholar] [CrossRef]
- Langenbruch, C.; Helfrich, M.; Flessa, H. Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest. Plant Soil 2012, 352, 389–403. [Google Scholar] [CrossRef]
- Prescott, C.E.; Vesterdal, L. Tree species effects on soils in temperate and boreal forests: Emerging themes and research needs. For. Ecol. Manag. 2013, 309, 1–3. [Google Scholar] [CrossRef]
- Hagen-Thorn, A.; Callesen, I.; Armolaitis, K.; Nihlgard, B. The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. For. Ecol. Manag. 2004, 195, 373–384. [Google Scholar] [CrossRef]
- Mueller, K.E.; Hobbie, S.E.; Chorover, J.; Reich, P.B.; Eisenhauer, N.; Castellano, M.J.; Chadwick, O.A.; Dobies, T.; Hale, C.M.; Jagodziński, A.M.; et al. Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species. Biogeochemistry 2015, 123, 313–327. [Google Scholar] [CrossRef]
- Cools, N.; Vesterdal, L.; De Vos, B.; Vanguelova, E.; Hansen, K. Tree species is the major factor explaining C:N ratios in European forest soils. For. Ecol. Manag. 2014, 311, 3–16. [Google Scholar] [CrossRef]
- Marty, C.; Houle, D.; Gagnon, C.; Courchesne, F. The relationships of soil total nitrogen concentrations, pools and C:N ratios with climate, vegetation types and nitrate deposition in temperate and boreal forests of eastern Canada. Catena 2017, 152, 163–172. [Google Scholar] [CrossRef]
- Yang, K.; Shi, W.; Zhu, J.J. The impact of secondary forests conversion into larch plantations on soil chemical and microbiological properties. Plant Soil 2013, 368, 535–546. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, X.; Chen, F.; Li, C.; Wu, L. Effects of the successive planting of Eucalyptus urophylla on soil bacterial and fungal community structure, diversity, microbial biomass, and enzyme activity. Land Degrad. Dev. 2019, 30, 636–646. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, J.J. Impact of tree litter decomposition on soil biochemical properties obtained from a temperate secondary forest in Northeast China. J. Soils Sediments 2015, 15, 13–23. [Google Scholar] [CrossRef]
- Vauramo, S.; Setälä, H. Decomposition of labile and recalcitrant litter types under different plant communities in urban soils. Urban Ecosyst. 2011, 14, 59–70. [Google Scholar] [CrossRef]
- Kooch, Y.; Tavakoli, M.; Akbarinia, M. Tree species could have substantial consequences on topsoil fauna: A feedback of land degradation/restoration. Eur. J. For. Res. 2018, 137, 793–805. [Google Scholar] [CrossRef]
- Sagheb-Talebi, K.; Sajedi, T.; Pourhashemi, M. Forests of Iran: A Treasure from the Past, a Hope for the Future; Springer: Berlin/Heidelberg, Germany, 2014; pp. 42–152. [Google Scholar]
- Hattenschwiler, S.; Jørgensen, H.B. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J. Ecol. 2010, 98, 754–763. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods; Klute, A., Ed.; Soil Science Society of America: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Danielson, R.E.; Southerland, P.L. Methods of Soil Analysis. Part I. Physical and Mineralogical Methods, 2nd ed.; ASA, SSSA: Madison, WI, USA, 1986; pp. 443–460. [Google Scholar]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis. Physical and Mineralogical Properties. Part I, 2nd ed.; Agronomy; ASA-SSSA: Madison, WI, USA, 1986; Volume 9, pp. 425–442. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Kooch, Y.; Zaccone, C.; Lamersdorf, N.P.; Tonon, G. Pit and mound influence on soil features in an Oriental Beech (Fagus orientalis Lipsky) forest. Eur. J. For. Res. 2014, 133, 347–354. [Google Scholar] [CrossRef]
- Salehi, A.; Ghorbanzadeh, N.; Kahneh, E. Earthworm biomass and abundance, soil chemical and physical properties under different poplar plantations in the north of Iran. J. For. Sci. 2013, 59, 223–229. [Google Scholar] [CrossRef]
- Neatrour, M.A.; Jones, R.H.; Golladay, S.W. Correlations between soil nutrient availability and fine-root biomass at two spatial scales in forested wetlands with contrasting hydrological regimes. Can. J. For. Res. 2005, 35, 2934–2941. [Google Scholar] [CrossRef]
- Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinson, D.S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Yang, Y.; Geng, Y.; Zhou, H.; Zhao, G.; Wang, L. Effects of gaps in the forest canopy on soil microbial communities and enzyme activity in a Chinese pine forest. Pedobiologia 2017, 61, 51–60. [Google Scholar] [CrossRef]
- Robertson, G.P.; Coleman, D.C.; Bledsoe, C.S.; Sollins, P. Standard Soil Methods for Long-Term Ecological Research; Oxford University Press: New York, USA, 1999; Volume 2. [Google Scholar]
- Krishna, M.P.; Mohan, M. Litter decomposition in forest ecosystems: A review. Energy Ecol. Environ. 2017, 2, 236–249. [Google Scholar] [CrossRef]
- Althoff, P.S.; Todd, T.C.; Thien, S.J.; Callaham, M.A., Jr. Response of soil microbial and invertebrate communities to tracked vehicle disturbance in tallgrass prairie. Appl. Soil Ecol. 2009, 43, 122–130. [Google Scholar] [CrossRef]
- Aponte, C.; García, L.V.; Marañón, T. Tree species effects on nutrient cycling and soil biota: A feedback mechanism favoring species coexistence. For. Ecol. Manag. 2013, 309, 36–46. [Google Scholar] [CrossRef]
- Centenaro, G.; Hudek, C.; Zanella, A.; Crivellaro, A. Root-soil physical and biotic interactions with a focus on tree root systems: A review. Appl. Soil Ecol. 2018, 123, 318–327. [Google Scholar] [CrossRef]
- Sojka, R.E.; Busscher, W.J.; Lehrsch, G.A. In situ strength, bulk density and water content relationships of a Durinodic Xeric Haplocalcid soil. Soil Sci. 2001, 166, 520–529. [Google Scholar] [CrossRef]
- Alameda, D.; Villar, R.; Iriondo, J.M. Spatial pattern of soil compaction: Trees’ footprint on soil physical properties. For. Ecol. Manag. 2012, 283, 128–137. [Google Scholar] [CrossRef]
- Guckland, A.; Jacob, M.; Flessa, H.; Thomas, F.M.; Leuschner, C. Acidity, nutrient stocks, and organic-matter content in soils of a temperate deciduous forest with different abundance of European beech (Fagus sylvatica L.). J. Plant Nutr. Soil Sci. 2009, 172, 500–511. [Google Scholar] [CrossRef]
- Garten, C.T.; Wullschleger, S.D.; Classen, A.T. Review and model-based analysis of factors influencing soil carbon sequestration under hybrid poplar. Biomass Bioenergy 2011, 35, 214–226. [Google Scholar] [CrossRef]
- Ruiz, N.; Lavelle, P.; Jiménez, J. Effect of land-use and management practices on soil macrofauna. In Soil Macrofauna Field Manual—Technical Level; FAO: Rome, Italy, 2008; pp. 29–36. [Google Scholar]
- Wang, X.; MA, L.; Jia, Z.; Jia, L. Root inclusion net method: Novel approach to determine fine root production and turnover in Larix Principis-rupprechtii Mayr plantation in North China. Turk. J. Agric. For. 2014, 38, 388–398. [Google Scholar] [CrossRef]
- Huang, X.; Liu, S.; Wang, H.; Hu, Z.; Li, Z.; You, Y. Changes of soil microbial biomass carbon and community composition through mixing nitrogen-fixing species with Eucalyptus urophylla in subtropical China. Soil Biol. Biochem. 2014, 73, 42–48. [Google Scholar] [CrossRef]
- Jourgholami, M.; Khajavi, S.; Labelle, E.R. Mulching and water diversion structures on skid trails: Response of soil physical properties six years after harvesting. Ecol. Eng. 2018, 123, 1–9. [Google Scholar] [CrossRef]
- Jourgholami, M.; Khajavi, S.; Labelle, E.R. Recovery of forest soil chemical properties following soil rehabilitation treatments: An assessment six years after machine impact. Croat. J. For. Eng. 2020, 41, 163–175. [Google Scholar] [CrossRef]
- Arslan, H.; Guleryu, G.; Kırmızı, S. Nitrogen mineralization in the soil of indigenous oak and pine plantation forests in a Mediterranean environment. Eur. J. Soil Biol. 2010, 46, 11–17. [Google Scholar] [CrossRef]
- Yan, E.R.; Wang, X.H.; Huang, J.J.; Li, G.Y.; Zhou, W. Decline of soil nitrogen mineralization and nitrification during forest conversion of evergreen broad-leaved forest to plantations in the subtropical area of eastern China. Biogeochemistry 2008, 89, 239–251. [Google Scholar] [CrossRef]
Treatment | Main Species | Slope (%) | Aspect | Tree Density (N ha−1) | Growing Stock (m3 ha−1) | d.b.h. (cm) |
---|---|---|---|---|---|---|
CB-PP | Hornbeam (Carpinus betulus L.) − Ironwood (Parrotia persica C.A.M.) | 19 ± 3 | NE | 342.3 ± 29.6 | 291.5 ± 31.7 | 58.6 ± 5.3 |
FE | Common ash (Fraxinus excelsior L.) | 16 ± 4 | NE | 635.7 ± 45.7 | 414.2 ± 25.7 | 22.3 ± 1.3 |
PA | Wild cherry (Prunus avium L.) | 15 ± 5 | NE | 618.2 ± 39.2 | 342.4 ± 29.4 | 21.4 ± 2.5 |
AC | Cappadocian maple (Acer cappadocicum Gled) | 17 ± 2 | NE | 584.6 ± 40.8 | 208.6 ± 34.1 | 18.6 ± 2.9 |
QC | Chestnut-leaved oak (Quercus castaneifolia C.A.M.) | 14 ± 3 | NE | 561.8 ± 36.5 | 190.9 ± 21.6 | 17.7 ± 3.7 |
Soil Properties | Undisturbed Natural Stand and Plantation Treatment | F Test | p Value | |||||
---|---|---|---|---|---|---|---|---|
CB-PP | FE | PA | AC | QC | ||||
Physical properties | Bulk density (g cm−3) | 1.04 ± 0.08d | 1.14 ± 0.09c | 1.16 ± 0.08c | 1.23 ± 0.07b | 1.34 ± 0.09a | 30.02 | 0.00 |
Total porosity (%) | 57.2 ± 3.23a | 53.85 ± 3.74b | 54.15 ± 3.03b | 51.92 ± 2.62b | 48.06 ± 3.34c | 17.54 | 0.00 | |
Macroporosity (%) | 43.17 ± 2.08a | 37.72 ± 1.99b | 35.14 ± 1.56c | 32.03 ± 1.39d | 28.29 ± 1.97e | 154.5 | 0.00 | |
Penetration resistance (MPa) | 1.23 ± 0.12c | 1.43 ± 0.16b | 1.46 ± 0.17b | 1.64 ± 0.16a | 1.73 ± 0.14a | 27.11 | 0.00 | |
Soil moisture (%) | 35.7 ± 7.04a | 33.4 ± 3.74ab | 32.3 ± 7.21ab | 28.6 ± 9.35bc | 26.5 ± 9.92c | 3.66 | 0.01 | |
Aggregate stability (%) | 61.1 ± 6.37a | 51.7 ± 8.67b | 50.5 ± 7.5b | 46.8 ± 7.86bc | 42.3 ± 9.24c | 12.21 | 0.00 | |
Sand (%) | 44.67 ± 1.84d | 46.03 ± 0.88d | 49.93 ± 1.9c | 54.59 ± 3.44b | 59.44 ± 1.94a | 128.33 | 0.00 | |
Clay (%) | 30.67 ± 1.54a | 30.7 ± 0.87a | 29.48 ± 0.79a | 30.01 ± 2.9a | 27.39 ± 1.17b | 10.95 | 0.00 | |
Silt (%) | 24.66 ± 1.24a | 23.26 ± 1.12b | 20.59 ± 1.72c | 15.41 ± 1.58d | 13.17 ± 1.13e | 207.41 | 0.00 | |
Chemical properties | pH (1:2.5 H2O) | 6.29 ± 0.11b | 6.61 ± 0.08a | 6.59 ± 0.12a | 6.11 ± 0.08c | 6.05 ± 0.08c | 120.49 | 0.00 |
C (%) | 3.13 ± 0.07d | 3.34 ± 0.07c | 3.37 ± 0.1c | 3.55 ± 0.11b | 3.73 ± 0.14a | 82.5 | 0.00 | |
N (%) | 0.28 ± 0.03a | 0.23 ± 0.02b | 0.22 ± 0.02bc | 0.21 ± 0.03c | 0.19 ± 0.02d | 26.28 | 0.00 | |
C/N ratio | 11.31 ± 1.16d | 14.58 ± 0.83c | 15.48 ± 1.63c | 17.32 ± 3.08b | 19.95 ± 2.97a | 35.96 | 0.00 | |
C storage (Mg ha−1) | 32.6 ± 3.23d | 38.13 ± 3.78c | 39.15 ± 3.58c | 43.73 ± 3.67b | 49.88 ± 1.75a | 62.16 | 0.00 | |
N storage (Mg ha−1) | 2.93 ± 0.54a | 2.64 ± 0.40ab | 2.57 ± 0.42b | 2.57 ± 0.25b | 2.56 ± 0.45b | 2.29 | 0.04 | |
Available P (mg kg−1) | 17.67 ± 2.23a | 15.53 ± 1.4b | 14.75 ± 1.45bc | 13.88 ± 1.56cd | 13.14 ± 1.53d | 17.63 | 0.00 | |
Available K (mg kg−1) | 266.48 ± 20.8a | 235.55 ± 10.5b | 228.64 ± 9.3b | 214.83 ± 7.8c | 192.54 ± 10.9d | 73.38 | 0.00 | |
Available Ca (mg kg−1) | 186.45 ± 10.2a | 171.92 ± 8.4b | 165.15 ± 7.6b | 152.32 ± 10.2c | 134.73 ± 11.8d | 65.08 | 0.00 | |
Available Mg (mg kg−1) | 41.48 ± 3.75a | 36.57 ± 2.9b | 34.23 ± 2.21c | 28.61 ± 1.94d | 27.42 ± 2.81d | 68.82 | 0.00 | |
Fulvic acid (mg/100 g) | 313.6 ± 20.1a | 282.7 ± 15.2b | 274.3 ± 16.5b | 260.8 ± 10.6c | 232.7 ± 12.1d | 60.41 | 0.00 | |
Humic acid (mg/100 g) | 160.7 ± 16.2a | 134.5 ± 9.2b | 123.8 ± 9.2c | 122.4 ± 9.5c | 105.6 ± 11.1d | 51.16 | 0.00 |
Soil Properties | Undisturbed Natural Stand and Plantation Treatment | F Test | p Value | |||||
---|---|---|---|---|---|---|---|---|
CB-PP | FE | PA | AC | QC | ||||
Biological properties | Earthworm density (n m−2) | 2.12 ± 0.26a | 1.82 ± 0.15b | 1.62 ± 0.15c | 1.54 ± 0.12c | 1.37 ± 0.09d | 48.94 | 0.00 |
Earthworm dry mass (mg m−2) | 26.61 ± 2.63a | 22.57 ± 2.16b | 20.48 ± 2.13c | 19.36 ± 2.41c | 16.14 ± 1.7d | 48.79 | 0.00 | |
Fine root biomass (g m−2) | 88.45 ± 7.28a | 76.31 ± 7.4b | 71.46 ± 5.68c | 69.27 ± 4.87c | 61.93 ± 3.5d | 43.99 | 0.00 | |
C and N Microbial properties | SMR | 0.38 ± 0.03a | 0.33 ± 0.02b | 0.32 ± 0.02b | 0.27 ± 0.02c | 0.26 ± 0.02c | 96.08 | 0.00 |
MBC | 492.2 ± 34.5a | 438.7 ± 25.2b | 380.6 ± 17.5c | 365.9 ± 14.2c | 325.3 ± 20.4d | 124.68 | 0.00 | |
NH4+ | 19.73 ± 2.89a | 16.54 ± 1.46b | 15.67 ± 1.3b | 14.12 ± 1.62c | 11.86 ± 1.44d | 40.46 | 0.00 | |
NO3− | 18.61 ± 2.12a | 15.92 ± 0.89b | 14.65 ± 0.69c | 13.25 ± 1.17d | 11.67 ± 1.09e | 67.29 | 0.00 | |
N Min | 32.37 ± 2.04a | 27.04 ± 1.41b | 25.81 ± 1.35c | 21.68 ± 1.4d | 20.75 ± 1.5d | 142.27 | 0.00 | |
MBN | 34.71 ± 2.61a | 28.35 ± 2.36b | 26.46 ± 1.52c | 20.58 ± 1.96d | 19.83 ± 1.42d | 144.7 | 0.00 |
Soil Properties | Litter Properties | Soil Physical Properties | ||||||||||||
Litter T | CL | NL | C/NL | BD | TP | MP | PR | SM | AS | Sand | Clay | Silt | ||
Biological properties | ED | −0.29 ** | −0.50 ** | 0.51 ** | −0.63 ** | −0.73 ** | 0.66 ** | 0.85 ** | −0.50 ** | 0.03 ns | 0.32 ** | −0.69 ** | 0.32 ** | 0.74 ** |
EB | −0.27 * | −0.54 ** | 0.55 ** | −0.67 ** | −0.74 ** | 0.67 ** | 0.85 ** | −0.44 ** | −0.01 ns | 0.31 ** | −0.70 ** | 0.38 ** | 0.72 ** | |
FRB | −0.29 ** | −0.46 ** | 0.62 ** | −0.65 ** | −0.61 ** | 0.52 ** | 0.77 ** | −0.31 ** | 0.23 * | 0.51 ** | −0.69 ** | 0.48 ** | 0.68 ** | |
C and N Microbial properties | SMR | −0.31 ** | −0.57 ** | 0.65 ** | −0.74 ** | −0.74 ** | 0.66 ** | 0.87 ** | −0.57 ** | 0.11 ns | 0.39 ** | −0.76 ** | 0.33 ** | 0.81 ** |
MBC | −0.40 ** | −0.49 ** | 0.68 ** | −0.71 ** | −0.63 ** | 0.52 ** | 0.85 ** | −0.49 ** | 0.31 ** | 0.57 ** | −0.82 ** | 0.51 ** | 0.81 ** | |
NH4+ | −0.27 * | −0.54 ** | 0.54 ** | −0.67 ** | −0.76 ** | 0.69 ** | 0.84 ** | −0.49 ** | −0.04 ns | 0.28 * | −0.67 ** | 0.31 ** | 0.72 ** | |
NO3− | −0.33 ** | −0.53 ** | 0.59 ** | −0.69 ** | −0.76 ** | 0.68 ** | 0.88 ** | −0.56 ** | 0.05 ns | 0.36 ** | −0.73 ** | 0.34 ** | 0.78 ** | |
N Min | −0.38 ** | −0.37 ** | 0.65 ** | −0.66 ** | −0.57 ** | 0.45 ** | 0.81 ** | −0.60 ** | 0.22 * | 0.45 ** | −0.78 ** | 0.48 ** | 0.78 ** | |
MBN | −0.35 ** | −0.52 ** | 0.68 ** | −0.73 ** | −0.77 ** | 0.69 ** | 0.91 ** | −0.61 ** | 0.18 ns | 0.46 ** | −0.78 ** | 0.35 ** | 0.84 ** | |
Soil Properties | Soil Chemical Properties | |||||||||||||
pH | Cs | Ns | C/Ns | Cstor | Nstor | P | K | Ca | Mg | Fulvic | Humic | |||
Biological properties | ED | 0.27 * | −0.83 ** | 0.61 ** | −0.74 ** | −0.80 ** | 0.17 ns | 0.94 ** | 0.91 ** | 0.93 ** | 0.96 ** | 0.76 ** | 0.74 ** | |
EB | 0.30 ** | −0.87 ** | 0.67 ** | −0.81 ** | −0.83 ** | 0.24 * | 0.95 ** | 0.89 ** | 0.96 ** | 0.96 ** | 0.83 ** | 0.79 ** | ||
FRB | 0.35 ** | −0.76 ** | 0.83 ** | −0.83 ** | −0.71 ** | 0.48 ** | 0.69 ** | 0.68 ** | 0.82 ** | 0.78 ** | 0.97 ** | 0.98 ** | ||
C and N Microbial properties | SMR | 0.44 ** | −0.89 ** | 0.67 ** | −0.79 ** | −0.84 ** | 0.23 * | 0.90 ** | 0.90 ** | 0.95 ** | 0.98 ** | 0.83 ** | 0.77 ** | |
MBC | 0.44 ** | −0.82 ** | 0.83 ** | −0.85 ** | −0.75 ** | 0.46 ** | 0.68 ** | 0.76 ** | 0.84 ** | 0.83 ** | 0.95 ** | 0.95 ** | ||
NH4+ | 0.30 ** | −0.87 ** | 0.59 ** | −0.76 ** | −0.84 ** | 0.14 ns | 0.96 ** | 0.92 ** | 0.97 ** | 0.96 ** | 0.75 ** | 0.72 ** | ||
NO3− | 0.33 ** | −0.90 ** | 0.64 ** | −0.78 ** | −0.85 ** | 0.18 ns | 0.92 ** | 0.94 ** | 0.96 ** | 0.97 ** | 0.78 ** | 0.75 ** | ||
N Min | 0.51 ** | −0.82 ** | 0.89 ** | −0.89 ** | −0.71 ** | 0.57 ** | 0.65 ** | 0.84 ** | 0.81 ** | 0.82 ** | 0.88 ** | 0.88 ** | ||
MBN | 0.42 ** | −0.89 ** | 0.69 ** | −0.80 ** | −0.86 ** | 0.22 * | 0.88 ** | 0.89 ** | 0.94 ** | 0.98 ** | 0.84 ** | 0.79 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jourgholami, M.; Picchio, R.; Tavankar, F.; Venanzi, R. Regeneration of Belowground Properties and Nutrient Pools in Soil after Compaction: Response to the Reforestation with Native Tree Species in the Hyrcanian Forest. Environ. Sci. Proc. 2021, 3, 72. https://doi.org/10.3390/IECF2020-08054
Jourgholami M, Picchio R, Tavankar F, Venanzi R. Regeneration of Belowground Properties and Nutrient Pools in Soil after Compaction: Response to the Reforestation with Native Tree Species in the Hyrcanian Forest. Environmental Sciences Proceedings. 2021; 3(1):72. https://doi.org/10.3390/IECF2020-08054
Chicago/Turabian StyleJourgholami, Meghdad, Rodolfo Picchio, Farzam Tavankar, and Rachele Venanzi. 2021. "Regeneration of Belowground Properties and Nutrient Pools in Soil after Compaction: Response to the Reforestation with Native Tree Species in the Hyrcanian Forest" Environmental Sciences Proceedings 3, no. 1: 72. https://doi.org/10.3390/IECF2020-08054
APA StyleJourgholami, M., Picchio, R., Tavankar, F., & Venanzi, R. (2021). Regeneration of Belowground Properties and Nutrient Pools in Soil after Compaction: Response to the Reforestation with Native Tree Species in the Hyrcanian Forest. Environmental Sciences Proceedings, 3(1), 72. https://doi.org/10.3390/IECF2020-08054