Development and Validation of an Enhanced Aerosol Product for Aeolus (L2A+) †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flament, T.; Trapon, D.; Lacour, A.; Dabas, A.; Ehlers, F.; Huber, D. Aeolus L2A Aerosol Optical Properties Product: Standard Correct Algorithm and Mie Correct Algorithm. Atmos. Meas. Tech. 2021, 14, 7851–7871. [Google Scholar] [CrossRef]
- Flamant, P.; Cuesta, J.; Denneulin, M.-L.; Dabas, A.; Huber, D. ADM-Aeolus Retrieval Algorithms for Aerosol and Cloud Products. Tellus A Dyn. Meteorol. Oceanogr. 2008, 60, 273. [Google Scholar] [CrossRef]
- Gkikas, A.; Gialitaki, A.; Binietoglou, I.; Marinou, E.; Tsichla, M.; Siomos, N.; Paschou, P.; Kampouri, A.; Voudouri, K.A.; Proestakis, E.; et al. First Assessment of Aeolus Standard Correct Algorithm Particle Backscatter Coefficient Retrievals in the Eastern Mediterranean. Atmos. Meas. Tech. 2023, 16, 1017–1042. [Google Scholar] [CrossRef]
- Stoffelen, A.; Pailleux, J.; Källén, E.; Vaughan, J.M.; Isaksen, L.; Flamant, P.; Wergen, W.; Andersson, E.; Schyberg, H.; Culoma, A.; et al. The Atmospheric Dynamics Mission for Global Wind Field Measurement. Bull. Am. Meteorol. Soc. 2005, 86, 73–88. [Google Scholar] [CrossRef]
- Ehlers, F.; Flament, T.; Dabas, A.; Trapon, D.; Lacour, A.; Baars, H.; Straume-Lindner, A.G. Optimization of Aeolus’ Aerosol Optical Properties by Maximum-Likelihood Estimation. Atmos. Meas. Tech. 2022, 15, 185–203. [Google Scholar] [CrossRef]
- Paschou, P.; Siomos, N.; Tsekeri, A.; Louridas, A.; Georgoussis, G.; Freudenthaler, V.; Binietoglou, I.; Tsaknakis, G.; Tavernarakis, A.; Evangelatos, C.; et al. The EVe Reference Polarisation Lidar System for the Calibration and Validation of the Aeolus L2A Product. Atmos. Meas. Tech. 2022, 15, 2299–2323. [Google Scholar] [CrossRef]
- van Zadelhoff, G.-J.; Donovan, D.P.; Wang, P. Detection of Aerosol and Cloud Features for the EarthCARE Lidar ATLID: The A-FM Product. EGUsphere 2023, 2023, 1–29. [Google Scholar]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.-M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS Reanalysis of Atmospheric Composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef]
- Morcrette, J.-J.; Boucher, O.; Jones, L.; Salmond, D.; Bechtold, P.; Beljaars, A.; Benedetti, A.; Bonet, A.; Kaiser, J.W.; Razinger, M.; et al. Aerosol Analysis and Forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: Forward Modeling. J. Geophys. Res. 2009, 114, D06206. [Google Scholar] [CrossRef]
- Ansmann, A.; Mamouri, R.-E.; Hofer, J.; Baars, H.; Althausen, D.; Abdullaev, S.F. Dust Mass, Cloud Condensation Nuclei, and Ice-Nucleating Particle Profiling with Polarization Lidar: Updated POLIPHON Conversion Factors from Global AERONET Analysis. Atmos. Meas. Tech. 2019, 12, 4849–4865. [Google Scholar] [CrossRef]
Index | Definition |
---|---|
10 | Clouds |
9 | Most likely clouds |
8 | Very likely clouds or aerosols |
7 | More likely clouds or aerosols |
6 | Likely clouds or aerosols |
5 | Likely low-altitude aerosol |
4 | Unlikely clouds or aerosol |
3 | Likely only molecules |
2 | Very likely only molecules |
1 | Most likely only molecules |
0 | Clear sky |
−1 | Fully Rayleigh attenuated |
−2 | No retrievals |
−3 | Surface data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizos, K.; Gkikas, A.; Proestakis, E.; Georgiou, T.; Amiridis, V.; Marinou, E.; Donovan, D.; Benas, N.; Stengel, M.; Retscher, C.; et al. Development and Validation of an Enhanced Aerosol Product for Aeolus (L2A+). Environ. Sci. Proc. 2023, 26, 91. https://doi.org/10.3390/environsciproc2023026091
Rizos K, Gkikas A, Proestakis E, Georgiou T, Amiridis V, Marinou E, Donovan D, Benas N, Stengel M, Retscher C, et al. Development and Validation of an Enhanced Aerosol Product for Aeolus (L2A+). Environmental Sciences Proceedings. 2023; 26(1):91. https://doi.org/10.3390/environsciproc2023026091
Chicago/Turabian StyleRizos, Konstantinos, Antonis Gkikas, Emmanouil Proestakis, Thanasis Georgiou, Vassilis Amiridis, Eleni Marinou, David Donovan, Nikos Benas, Martin Stengel, Christian Retscher, and et al. 2023. "Development and Validation of an Enhanced Aerosol Product for Aeolus (L2A+)" Environmental Sciences Proceedings 26, no. 1: 91. https://doi.org/10.3390/environsciproc2023026091
APA StyleRizos, K., Gkikas, A., Proestakis, E., Georgiou, T., Amiridis, V., Marinou, E., Donovan, D., Benas, N., Stengel, M., Retscher, C., Baars, H., & Floutsi, A. A. (2023). Development and Validation of an Enhanced Aerosol Product for Aeolus (L2A+). Environmental Sciences Proceedings, 26(1), 91. https://doi.org/10.3390/environsciproc2023026091