The High-Resolution Numerical Weather Prediction System of the Agroray Project †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Setup
- -
- Number and distribution of hybrid vertical levels: (a) 39 levels defined manually with enhanced resolution near the surface (hereafter 39-Manual; operationally used by LMC/AUTH [2]); (b) 50 levels defined by WRF (50-WRF); (c) 50 levels defined by WRF, with a higher resolution in the lower troposphere (stretched) and the lowest level at 20 m aboveground (50-WRFS); (d) 80 levels defined by WRF (80-WRF). The model top was set at 50 hPa.
- -
- Land use data: USGS in d01, d02 and (a) USGS in d03 (USGS), (b) Corine (COoRdination of INformation on the Environment) in d03 reclassified in the USGS categories (Corine) [6]. The vertical levels of 50-WRFS were used in these simulations.
2.2. Cases, Data and Statistical Evaluation
3. Results
3.1. Continuous Variables
3.2. Precipitation
3.3. The Operational NWP System
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Pytharoulis, I.; Tegoulias, I.; Kotsopoulos, S.; Bampzelis, D.; Karacostas, T.; Katragkou, E. Evaluation of the operational numerical weather predictions of the WaveForUs project. In Proceedings of the 12th International Conference on Meteorology, Climatology and Atmospheric Physics (COMECAP2014), Heraklion, Greece, 28–31 May 2014. [Google Scholar]
- Boucouvala, D.; Andreadis, T.; Gofa, F. Verification Results for Greece. In Reports on ICON; Issue 6; Rast, S., Redler, R., Reinert, D., Rieger, D., Prill, F., Eds.; Deutscher Wetterdienst: Offenbach, Germany, 2021; pp. 9–12. [Google Scholar]
- Katsafados, P.; Mavromatidis, E.; Gkikas, N.; Papadopoulos, A. The numerical weather prediction system of Harokopio University and statistical evaluation of the forecasts. Geographies 2012, 20, 79–98. [Google Scholar]
- ECMWF, Implementation of IFS Cycle 47R3. Available online: https://confluence.ecmwf.int/display/FCST/Implementation+of+IFS+Cycle+47r3 (accessed on 30 May 2023).
- Pineda, N.; Jorba, O.; Jorge, J.; Baldasano, J.M. Using NOAA AVHRR and SPOT VGT data to estimate surface parameters: Application to a mesoscale meteorological model. Int. J. Remote Sens. 2004, 25, 129–143. [Google Scholar] [CrossRef]
- Pytharoulis, I.; Kotsopoulos, S.; Tegoulias, I.; Kartsios, S.; Bampzelis, D.; Karacostas, T. Numerical modeling of an intense precipitation event and its associated lightning activity over northern Greece. Atmos. Res. 2016, 169, 523–538. [Google Scholar] [CrossRef]
- Clark, A.J.; Gallus, W.A., Jr.; Weisman, M.L. Neighborhood-based verification of precipitation forecasts from convection-allowing NCAR WRF model simulations and the operational NAM. Weather Forecast. 2010, 25, 1495–1509. [Google Scholar] [CrossRef]
- Matsangouras, I.; Pytharoulis, I.; Nastos, P.T. Numerical modeling and analysis of the effect of complex Greek topography on tornadogenesis. Nat. Hazards Earth Syst. Sci. 2014, 14, 1905–1919. [Google Scholar] [CrossRef]
- Tsopouridis, L.; Pytharoulis, I.; Karacostas, T.; Zanis, P.; Tegoulias, I. Numerical study of an intense episode of Vardaris wind. In Advances in Meteorology, Climatology and Atmospheric Physics; Helmis, C.G., Nastos, P.T., Eds.; Springer Atmospheric Sciences: Berlin/Heidelberg, Germany, 2012; pp. 325–332. [Google Scholar]
Experiment | 39-Manual | 50-WRF | 50-WRFS | 80-WRF | USGS | Corine |
---|---|---|---|---|---|---|
T2 (K) | 2.87 | 2.93 | 2.85 | 2.94 | 2.86 | 2.57 |
RH2 (%) | 13.57 | 13.92 | 13.45 | 13.98 | 13.45 | 13.38 |
WS10 (m/s) | 4.03 | 4.04 | 4.03 | 4.04 | 4.03 | 4.01 |
Experiment | 39-Manual | 50-WRF | 50-WRFS | 80-WRF | USGS | Corine |
---|---|---|---|---|---|---|
T2 (K) | 1.49 | 1.40 | 1.46 | 1.39 | 1.47 | 1.37 |
RH2 (%) | 7.27 | 7.43 | 7.10 | 7.46 | 7.20 | 7.76 |
WS10 (m/s) | 3.94 | 4.10 | 4.03 | 4.05 | 4.04 | 3.91 |
Experiment | 39-Manual | 50-WRF | 50-WRFS | 80-WRF | USGS | Corine |
---|---|---|---|---|---|---|
POD 1 mm/6 h | 0.8580 | 0.8604 | 0.8711 | 0.8694 | 0.8561 | 0.8545 |
FAR 1 mm/6 h | 0.1857 | 0.1881 | 0.1845 | 0.1833 | 0.1879 | 0.1877 |
ETS 1 mm/6 h | 0.7177 | 0.7173 | 0.7278 | 0.7273 | 0.7145 | 0.7136 |
POD 10 mm/6 h | 0.6185 | 0.6079 | 0.6244 | 0.6209 | 0.6223 | 0.6249 |
FAR 10 mm/6 h | 0.7283 | 0.7262 | 0.7219 | 0.7246 | 0.7218 | 0.7215 |
ETS 10 mm/6 h | 0.2309 | 0.2326 | 0.2376 | 0.2357 | 0.2372 | 0.2377 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pytharoulis, I.; Kartsios, S.; Kostopoulos, V.; Spyrou, C.; Tegoulias, I.; Bampzelis, D.; Zanis, P. The High-Resolution Numerical Weather Prediction System of the Agroray Project. Environ. Sci. Proc. 2023, 26, 90. https://doi.org/10.3390/environsciproc2023026090
Pytharoulis I, Kartsios S, Kostopoulos V, Spyrou C, Tegoulias I, Bampzelis D, Zanis P. The High-Resolution Numerical Weather Prediction System of the Agroray Project. Environmental Sciences Proceedings. 2023; 26(1):90. https://doi.org/10.3390/environsciproc2023026090
Chicago/Turabian StylePytharoulis, Ioannis, Stergios Kartsios, Vassilios Kostopoulos, Christos Spyrou, Ioannis Tegoulias, Dimitrios Bampzelis, and Prodromos Zanis. 2023. "The High-Resolution Numerical Weather Prediction System of the Agroray Project" Environmental Sciences Proceedings 26, no. 1: 90. https://doi.org/10.3390/environsciproc2023026090
APA StylePytharoulis, I., Kartsios, S., Kostopoulos, V., Spyrou, C., Tegoulias, I., Bampzelis, D., & Zanis, P. (2023). The High-Resolution Numerical Weather Prediction System of the Agroray Project. Environmental Sciences Proceedings, 26(1), 90. https://doi.org/10.3390/environsciproc2023026090