Environmental Impact of Urban Design Elements in a Mediterranean City †
Abstract
:1. Introduction
2. Methods
2.1. Study Area and Climatic Conditions
2.2. Model Simulation and Thermal Conditions
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, C.; Lanza, K.; Li, D.; Zhou, Y.; Aunan, K.; Loo, B.P.; Lee, J.K.; Luo, B.; Duan, X.; Zhang, W.; et al. Impact of heat on all-cause and cause-specific mortality: A multi-city study in Texas. Environ. Res. 2023, 224, 115453. [Google Scholar] [CrossRef]
- Zafeiratou, S.; Analitis, A.; Founda, D.; Giannakopoulos, C.; Varotsos, K.V.; Sismanidis, P.; Keramitsoglou, I.; Katsouyanni, K. Spatial variability in the effect of high ambient temperature on mortality: An analysis at municipality level within the greater athens area. Int. J. Environ. Res. Public Health 2019, 16, 3689. [Google Scholar] [CrossRef] [PubMed]
- Demoury, C.; Aerts, R.; Vandeninden, B.; Van Schaeybroeck, B.; De Clercq, E.M. Impact of Short-Term Exposure to Extreme Temperatures on Mortality: A Multi-City Study in Belgium. Int. J. Environ. Res. Public Health 2022, 19, 3763. [Google Scholar] [CrossRef] [PubMed]
- Tseliou, A.; Tsiros, I.; Nikolopoulou, M.; Papadopoulos, G. Outdoor thermal sensation in a Mediterranean climate (Athens): The effect of selected microclimatic parameters. Archit. Sci. Rev. 2016, 59, 190–202. [Google Scholar] [CrossRef]
- Xiao, J.; Yuizono, T. Climate-adaptive landscape design: Microclimate and thermal comfort regulation of station square in the Hokuriku Region, Japan. Build. Environ. 2022, 212, 108813. [Google Scholar] [CrossRef]
- Peng, M.; Huang, H. The Synergistic Effect of Urban Canyon Geometries and Greenery on Outdoor Thermal Comfort in Humid Subtropical Climates. Front. Environ. Sci. 2022, 10, 851810. [Google Scholar] [CrossRef]
- Tsiros, I.X.; Hoffman, M.E.; Tseliou, A.; Christopoulou, V.; Lykoudis, S. An assessment to evaluate potential passive cooling patterns for climate change adaptation in a residential neighbourhood of a Mediterranean coastal city (Athens, Greece). Int. J. Glob. Warm. 2018, 16, 181. [Google Scholar] [CrossRef]
- Heshmat Mohajer, H.R.; Ding, L.; Kolokotsa, D.; Santamouris, M. On the Thermal Environmental Quality of Typical Urban Settlement Configurations. Buildings 2022, 13, 76. [Google Scholar] [CrossRef]
- Gaspari, J.; Fabbri, K.; Lucchi, M. The use of outdoor microclimate analysis to support decision making process: Case study of Bufalini Square in Cesena Italy. Sustain. Cities Soc. 2018, 42, 206–215. [Google Scholar] [CrossRef]
- Jacobs, C.; Klok, L.; Bruse, M.; Cortesão, J.; Lenzholzer, S.; Kluck, J. Are urban water bodies really cooling? Urban Clim. 2020, 32, 100607. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lau, K.K.L.; Ren, C.; Ng, E. Performance of Hong Kong’s common trees species for outdoor temperature regulation, thermal comfort and energy saving. Build. Environ. 2018, 137, 157–170. [Google Scholar] [CrossRef]
- Tseliou, A.; Koletsis, I.; Pantavou, K.; Thoma, E.; Lykoudis, S.; Tsiros, I.X. Evaluating the effects of different mitigation strategies on the warm thermal environment of an urban square in Athens, Greece. Urban Clim. 2022, 44, 101217. [Google Scholar] [CrossRef]
- Del Serrone, G.; Peluso, P.; Moretti, L. Evaluation of Microclimate Benefits Due to Cool Pavements and Green Infrastructures on Urban Heat Islands. Atmosphere 2022, 13, 1586. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, B.; Hu, Y. Numerical Simulation of Local Climate Zone Cooling Achieved through Modification of Trees, Albedo and Green Roofs—A Case Study of Changsha, China. Sustainability 2020, 12, 2752. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- Bruse, M.; Fleer, H. Simulating surface-plant-air interactions inside urban environments with a three-dimensional numerical model. Environ. Model. Softw. 1998, 13, 373–384. [Google Scholar] [CrossRef]
- Jendritzky, G.; Havenith, G.; Weihs, P.; Batchvarova, E. Towards a Universal Thermal Climate Index UTCI for assessing the thermal environment of the human being. Final report COST Action 730, Freiburg, Germany. 2009. Available online: https://www.cost.eu/actions/730/ (accessed on 24 August 2023).
- Koletsis, I.; Tseliou, A.; Lykoudis, S.; Tsiros, I.X.; Lagouvardos, K.; Psiloglou, B.; Founda, D.; Pantavou, K. Validation of ENVI-met microscale model with in-situ measurements in warm thermal conditions across Athens area. In Proceedings of the 17th International Conference on Environmental Science and Technology, CEST2021, Athens, Greece, 1–4 September 2021. [Google Scholar]
UTCI (°C) | Thermal Stress | |
---|---|---|
Original Scale 1 | Mediterranean Scale for the Warm Period 2 | |
Above 46 | Above 39.9 | Extreme heat stress |
38 to 46 | 38.3 to 39.9 | Very strong heat stress |
32 to 38 | 36.8 to 38.3 | Strong heat stress |
26 to 32 | 34.0 to 36.8 | Moderate heat stress |
9 to26 | 27.0 to 34.0 | No thermal stress |
0 to 9 | 24.6 to 27.0 | Slight cold stress |
−13 to 0 | 23.0 to 24.6 | Moderate cold stress |
−27 to −13 | 21.5 to 23.0 | Strong cold stress |
−40 to −27 | 20.2 to 21.5 | Very strong cold stress |
Below −40 | Below 20.2 | Extreme cold stress |
Urban Design Layout | Average (02:00LST–23:00LST) | Average (11:00LST–17:00LST) | Maximum | Minimum | ||||
---|---|---|---|---|---|---|---|---|
UTCI (°C) | Tair (°C) | UTCI (°C) | Tair (°C) | UTCI (°C) | Tair (°C) | UTCI (°C) | Tair (°C) | |
Courtyard (CY) | 30.2 (NTS) | 28.9 | 36.3 (MHS) | 31.5 | 37.3 (14:00) (SHS) | 32.6 | 23.1 (6:00) | 24.7 |
EW street (EWs) | 31.3 (NTS) | 29.6 | 39.7 (VSHS) | 33.0 | 40.9 (15:00) (EHS) | 33.6 | 21.1 (6:00) | 24.8 |
NS street (NSs) | 31.0 (NTS) | 28.9 | 37.2 (SHS) | 31.1 | 39.7 (15:00)(VSHS) | 31.9 | 22.5 (5:00) | 25.1 |
Avenue (AV) | 31.7 (NTS) | 29.5 | 39.6 (VSHS) | 32.8 | 40.7 (16:00) (EHS) | 33.4 | 21.3 (5:00) | 24.5 |
Pavement (P) | 31.1 (NTS) | 29.0 | 38.3 (VSHS) | 31.4 | 39.5 (16:00)(VSHS) | 32.2 | 21.5 (6:00) | 25.0 |
Trees (T) | 30.5 (NTS) | 29.2 | 36.4 (MHS) | 32.0 | 37.9 (14:00) (SHS) | 32.8 | 23.5 (6:00) | 24.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseliou, A.; Melas, E.; Mela, A.; Tsiros, I. Environmental Impact of Urban Design Elements in a Mediterranean City. Environ. Sci. Proc. 2023, 26, 76. https://doi.org/10.3390/environsciproc2023026076
Tseliou A, Melas E, Mela A, Tsiros I. Environmental Impact of Urban Design Elements in a Mediterranean City. Environmental Sciences Proceedings. 2023; 26(1):76. https://doi.org/10.3390/environsciproc2023026076
Chicago/Turabian StyleTseliou, Areti, Emmanouil Melas, Athina Mela, and Ioannis Tsiros. 2023. "Environmental Impact of Urban Design Elements in a Mediterranean City" Environmental Sciences Proceedings 26, no. 1: 76. https://doi.org/10.3390/environsciproc2023026076
APA StyleTseliou, A., Melas, E., Mela, A., & Tsiros, I. (2023). Environmental Impact of Urban Design Elements in a Mediterranean City. Environmental Sciences Proceedings, 26(1), 76. https://doi.org/10.3390/environsciproc2023026076