Evaluation of the Simulated Atmospheric Particulate Matter Chemical Composition in Athens: Organic Aerosols Formation Sensitivity Tests †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jimenez, J.L.; Canagaratna, M.R.; Donahue, N.M.; Prevot, A.S.; Zhang, Q.; Kroll, J.H.; DeCarlo, P.F.; Allan, J.D.; Coe, H.; Ng, N.L.; et al. Evolution of organic aerosols in the atmosphere. Science 2009, 326, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Tsigaridis, K.; Daskalakis, N.; Kanakidou, M.; Adams, P.J.; Artaxo, P.; Bahadur, R.; Balkanski, Y.; Bauer, S.E.; Bellouin, N.; Benedetti, A.; et al. The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmos. Chem. Phys. 2014, 14, 10845–10895. [Google Scholar] [CrossRef]
- Strader, R.; Lurmann, F.; Pandis, S.N. Evaluation of secondary organic aerosol formation in winter. Atmos. Environ. 1999, 33, 4849–4863. [Google Scholar] [CrossRef]
- Robinson, A.L.; Donahue, N.M.; Shrivastava, M.K.; Weitkamp, E.A.; Sage, A.M.; Grieshop, A.P.; Lane, T.E.; Pierce, J.R.; Pandis, S.N. Rethinking organic aerosols: Semi-volatile emissions and photochemical aging. Science 2007, 315, 1259–1262. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.; Knipping, E.; Yarwood, G. 1.5-Dimensional volatility basis set approach for modeling organic aerosol in CAMx and CMAQ. Atmos. Environ. 2014, 95, 158–164. [Google Scholar] [CrossRef]
- Meroni, A.; Pirovano, G.; Gilardoni, S.; Lonati, G.; Colombi, C.; Gianelle, V.; Paglione, M.; Poluzzi, V.; Riva, G.; Toppetti, A. Investigating the role of chemical and physical processes on organic aerosol modelling with CAMx in the Po Valley during a winter episode. Atmos. Environ. 2017, 171, 126–142. [Google Scholar] [CrossRef]
- Ciarelli, G.; Aksoyoglu, S.; El Haddad, I.; Bruns, E.A.; Crippa, M.; Poulain, L.; Äijälä, M.; Carbone, S.; Freney, E.; O’Dowd, C.; et al. Modelling winter organic aerosol at the European scale with CAMx: Evaluation and source apportionment with a VBS parameterization based on novel wood burning smog chamber experiments. Atmos. Chem. Phys. 2017, 17, 7653–7669. [Google Scholar] [CrossRef]
- Athanasopoulou, E.; Vogel, H.; Vogel, B.; Tsimpidi, A.P.; Pandis, S.N.; Knote, C.; Fountoukis, C. Modeling the meteorological and chemical effects of secondary organic aerosols during an EUCAARI campaign. Atmos. Chem. Phys. 2013, 13, 625–645. [Google Scholar] [CrossRef]
- Ramboll Environment and Health. User’s Guide: The Comprehensive Air Quality Model with Extensions (CAMx) Version 7.2.; Ramboll US Consulting, Inc.: Arlington, VA, USA, 2022. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; U.S. National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Kuenen, J.; van der Gon, H.D.; Super, I.; Dellaert, S.; Visschedijk, A.; Guevara, M.; Jalkanen, J.-P.; Majamäki, E.; Schindlbacher, S.; Matthews, B.; et al. Recent Developments in the CAMS European Regional Emissions Data (CAMS-REG). CAMS (29 June 2021). Available online: https://atmosphere.copernicus.eu/sites/default/files/custom-uploads/CAMS-5thPUW/5.%20Kuenen_CAMS_emissions_PUW_Remote_20210629.pdf (accessed on 24 February 2023).
- Liora, N.; Kontos, S.; Parliari, D.; Akritidis, D.; Poupkou, A.; Papanastasiou, D.K.; Melas, D. On-line heating emissions based on WRF meteorology—Application and evaluation of a modeling system over Greece. Atmosphere 2022, 13, 568. [Google Scholar] [CrossRef]
- Liora, N.; Markakis, K.; Poupkou, A.; Giannaros, T.M.; Melas, D. The natural emissions model (NEMO): Description, application and model evaluation. Atmos. Environ. 2015, 122, 493–504. [Google Scholar] [CrossRef]
- Kontos, S.; Liora, N.; Giannaros, C.; Kakosimos, K.; Poupkou, A.; Melas, D. Modeling natural dust emissions in the central Middle East: Parameterizations and sensitivity. Atmos. Environ. 2018, 190, 294–307. [Google Scholar] [CrossRef]
- Inness, A.; Blechschmidt, A.M.; Bouarar, I.; Chabrillat, S.; Crepulja, M.; Engelen, R.J.; Eskes, H.; Flemming, J.; Gaudel, A.; Hendrick, F.; et al. Data assimilation of satellite-retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF’s Composition-IFS. Atmos. Chem. Phys. 2015, 15, 5275–5303. [Google Scholar] [CrossRef]
- Liakakou, E.; Stavroulas, I.; Kaskaoutis, D.G.; Grivas, G.; Paraskevopoulou, D.; Dumka, U.C.; Tsagkaraki, M.; Bougiatioti, A.; Oikonomou, K.; Sciare, J.; et al. Long-term variability, source apportionment and spectral properties of black carbon at an urban background site in Athens, Greece. Atmos. Environ. 2020, 222, 117137. [Google Scholar] [CrossRef]
- Diapouli, E.; Fetfatzis, P.; Panteliadis, P.; Spitieri, C.; Gini, M.I.; Papagiannis, S.; Vasilatou, V.; Eleftheriadis, K. PM2.5 source apportionment and implications for particle hygroscopicity at an urban background site in Athens, Greece. Atmosphere 2022, 13, 1685. [Google Scholar] [CrossRef]
- Stavroulas, I.; Grivas, G.; Michalopoulos, P.; Liakakou, E.; Bougiatioti, A.; Kalkavouras, P.; Fameli, K.M.; Hatzianastassiou, N.; Mihalopoulos, N.; Gerasopoulos, E. Field evaluation of low-cost PM sensors (Purple Air PA-II) Under variable urban air quality conditions, in Greece. Atmosphere 2020, 11, 926. [Google Scholar] [CrossRef]
- Liora, N.; Poupkou, A.; Giannaros, T.M.; Kakosimos, K.E.; Stein, O.; Melas, D. Impacts of natural emission sources on particle pollution levels in Europe. Atmos. Environ. 2016, 137, 171–185. [Google Scholar] [CrossRef]
- Theodosi, C.; Tsagkaraki, M.; Zarmpas, P.; Grivas, G.; Liakakou, E.; Paraskevopoulou, D.; Lianou, M.; Gerasopoulos, E.; Mihalopoulos, N. Multi-year chemical composition of the fine-aerosol fraction in Athens, Greece, with emphasis on the contribution of residential heating in wintertime. Atmos. Chem. Phys. 2018, 18, 14371–14391. [Google Scholar] [CrossRef]
- Chang, J.C.; Hanna, S.R. Air quality model performance evaluation. Meteorol. Atmos. Phys. 2004, 87, 167–196. [Google Scholar] [CrossRef]
- European Commission. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union 2008, L 152/1, 1–44.
- Kontos, S.; Kakosimos, K.; Liora, N.; Poupkou, A.; Melas, D. Towards a regional dust modeling system in the central Middle East: Evaluation, uncertainties and recommendations. Atmos. Environ. 2021, 246, 118160. [Google Scholar] [CrossRef]
PM10 * | PM2.5 * | PM2.5 ** | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Jan 2019 | Jul 2019 | Jan 2019 | Jul 2019 | Jul 2019 | ||||||
Evaluation Metrics *** (Uniteless) | SOAP | VBS | SOAP | VBS | SOAP | VBS | SOAP | VBS | SOAP | VBS |
NMB | +0.39 | +0.25 | −0.35 | −0.33 | +0.41 | +0.21 | −0.41 | −0.38 | −0.19 | −0.14 |
NMSE | 1.42 | 1.31 | 0.57 | 0.50 | 1.71 | 1.50 | 0.71 | 0.62 | 0.35 | 0.30 |
IOA | 0.58 | 0.58 | 0.48 | 0.50 | 0.56 | 0.59 | 0.43 | 0.44 | 0.44 | 0.46 |
Fac2 | 0.59 | 0.62 | 0.65 | 0.69 | 0.58 | 0.61 | 0.60 | 0.65 | 0.78 | 0.81 |
Fb | +0.25 | +0.15 | −0.44 | −0.41 | +0.26 | +0.13 | −0.54 | −0.48 | −0.22 | −0.16 |
Fs | +0.20 | +0.07 | −0.20 | −0.21 | +0.33 | +0.17 | −0.47 | −0.46 | −0.05 | −0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poupkou, A.; Kontos, S.; Liora, N.; Tsiaousidis, D.; Kapsomenakis, I.; Solomos, S.; Liakakou, E.; Athanasopoulou, E.; Grivas, G.; Diapouli, E.; et al. Evaluation of the Simulated Atmospheric Particulate Matter Chemical Composition in Athens: Organic Aerosols Formation Sensitivity Tests. Environ. Sci. Proc. 2023, 26, 32. https://doi.org/10.3390/environsciproc2023026032
Poupkou A, Kontos S, Liora N, Tsiaousidis D, Kapsomenakis I, Solomos S, Liakakou E, Athanasopoulou E, Grivas G, Diapouli E, et al. Evaluation of the Simulated Atmospheric Particulate Matter Chemical Composition in Athens: Organic Aerosols Formation Sensitivity Tests. Environmental Sciences Proceedings. 2023; 26(1):32. https://doi.org/10.3390/environsciproc2023026032
Chicago/Turabian StylePoupkou, Anastasia, Serafim Kontos, Natalia Liora, Dimitrios Tsiaousidis, Ioannis Kapsomenakis, Stavros Solomos, Eleni Liakakou, Eleni Athanasopoulou, Georgios Grivas, Evangelia Diapouli, and et al. 2023. "Evaluation of the Simulated Atmospheric Particulate Matter Chemical Composition in Athens: Organic Aerosols Formation Sensitivity Tests" Environmental Sciences Proceedings 26, no. 1: 32. https://doi.org/10.3390/environsciproc2023026032
APA StylePoupkou, A., Kontos, S., Liora, N., Tsiaousidis, D., Kapsomenakis, I., Solomos, S., Liakakou, E., Athanasopoulou, E., Grivas, G., Diapouli, E., Vasilatou, V., Papagiannis, S., Progiou, A., Kalabokas, P., Melas, D., Gerasopoulos, E., Eleftheriadis, K., & Zerefos, C. (2023). Evaluation of the Simulated Atmospheric Particulate Matter Chemical Composition in Athens: Organic Aerosols Formation Sensitivity Tests. Environmental Sciences Proceedings, 26(1), 32. https://doi.org/10.3390/environsciproc2023026032