Classification of Unmanned Aerial Vehicles in Meteorology: A Survey †
Abstract
:1. Introduction
2. Related Work
3. Methodology
4. Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nolan, P.J.; Pinto, J.; González-Rocha, J.; Jensen, A.; Vezzi, C.N.; Bailey, S.C.C.; de Boer, G.; Diehl, C.; Laurence, R.; Powers, C.W.; et al. Coordinated Unmanned Aircraft System (UAS) and Ground-Based Weather Measurements to Predict Lagrangian Coherent Structures (LCSs). Sensors 2018, 18, 4448. [Google Scholar] [CrossRef] [PubMed]
- Shimura, T.; Inoue, M.; Tsujimoto, H.; Sasaki, K.; Iguchi, M. Estimation of Wind Vector Profile Using a Hexarotor Unmanned Aerial Vehicle and Its Application to Meteorological Observation up to 1000 m above Surface. J. Atmos. Ocean. Technol. 2018, 35, 1621–1631. [Google Scholar] [CrossRef]
- Prudden, S.; Fisher, A.; Marino, M.; Mohamed, A.; Watkins, S.; Wild, G. Measuring Wind with Small Unmanned Aircraft Systems. J. Wind. Eng. Ind. Aerodyn. 2018, 176, 197–210. [Google Scholar] [CrossRef]
- Meier, K.; Hann, R.; Skaloud, J.; Garreau, A. Wind Estimation with Multirotor UAVs. Atmosphere 2022, 13, 551. [Google Scholar] [CrossRef]
- Rautenberg, A.; Schön, M.; Berge, K.Z.; Mauz, M.; Manz, P.; Platis, A.; van Kesteren, B.; Suomi, I.; Kral, S.T.; Bange, J. The Multi-Purpose Airborne Sensor Carrier MASC-3 for Wind and Turbulence Measurements in the Atmospheric Boundary Layer. Sensors 2019, 19, 2292. [Google Scholar] [CrossRef] [PubMed]
- Cione, J.J.; Bryan, G.H.; Dobosy, R.; Zhang, J.A.; de Boer, G.; Aksoy, A.; Wadler, J.B.; Kalina, E.A.; Dahl, B.A.; Ryan, K.; et al. Eye of the Storm: Observing Hurricanes with a Small Unmanned Aircraft System. Bull. Am. Meteorol. Soc. 2020, 101, E186–E205. [Google Scholar] [CrossRef]
- Frew, E.W.; Argrow, B.; Borenstein, S.; Swenson, S.; Hirst, C.A.; Havenga, H.; Houston, A. Field Observation of Tornadic Supercells by Multiple Autonomous Fixed-wing Unmanned Aircraft. J. Field Robot. 2020, 37, 1077–1093. [Google Scholar] [CrossRef]
- Swenson, S.; Argrow, B.; Frew, E.; Borenstein, S.; Keeler, J. Development and Deployment of Air-Launched Drifters from Small UAS. Sensors 2019, 19, 2149. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, X.; Zhou, X. Design on Dropsonde Meteorological Detection System Based on UAV. In Proceedings of the 2018 3rd International Conference on Electrical, Automation and Mechanical Engineering (EAME 2018), Xi’an, China, 24–25 June 2018. [Google Scholar]
- Jacob, J.D.; Chilson, P.B.; Houston, A.L.; Smith, S.W. Considerations for Atmospheric Measurements with Small Unmanned Aircraft Systems. Atmosphere 2018, 9, 252. [Google Scholar] [CrossRef]
- Finn, A.; Rogers, K.; Meade, J.; Skinner, J.; Zargarian, A. Preliminary Evaluation of Atmospheric Temperature and Wind Profiles Obtained Using Unmanned Aerial Vehicle Based Acoustic Tomography. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Enschede, The Netherlands, 10–14 June 2019; Volume 42. [Google Scholar]
- Segales, A.R.; Greene, B.R.; Bell, T.M.; Doyle, W.; Martin, J.J.; Pillar-Little, E.A.; Chilson, P.B. The CopterSonde: An Insight into the Development of a Smart Unmanned Aircraft System for Atmospheric Boundary Layer Research. Atmos. Meas. Technol. 2020, 13, 2833–2848. [Google Scholar] [CrossRef]
- Chodorek, A.; Chodorek, R.R.; Yastrebov, A. Weather Sensing in an Urban Environment with the Use of a Uav and Webrtc-Based Platform: A Pilot Study. Sensors 2021, 21, 7113. [Google Scholar] [CrossRef] [PubMed]
- Leuenberger, D.; Haefele, A.; Omanovic, N.; Fengler, M.; Martucci, G.; Calpini, B.; Fuhrer, O.; Rossa, A. Improving High-Impact Numerical Weather Prediction with Lidar and Drone Observations. Bull. Am. Meteorol. Soc. 2020, 101, E1036–E1051. [Google Scholar] [CrossRef]
- Peng, J.; Lu, J.; Yang, H.; Liang, L.; Tang, R.; Zhang, W.; Zhao, M. Near Surface Layer Meteorological Observation System Based on Programmable Unmanned Aerial Vehicles. In Proceedings of the Journal of Physics: Conference Series, Guizhou, China, 23–25 September 2022; Volume 2419. [Google Scholar]
- Schuyler, T.J.; Gohari, S.M.I.; Pundsack, G.; Berchoff, D.; Guzman, M.I. Using a Balloon-Launched Unmanned Glider to Validate Real-Time WRF Modeling. Sensors 2019, 19, 1914. [Google Scholar] [CrossRef] [PubMed]
- Tripp, D.D.; Martin, E.R.; Reeves, H.D. Applications of Uncrewed Aerial Vehicles (Uavs) in Winter Precipitation-Type Forecasts. J. Appl. Meteorol. Clim. 2021, 60, 361–375. [Google Scholar] [CrossRef]
- Jung, W.; Cha, J.W.; Ko, A.R.; Chae, S.; Ro, Y.; Hwang, H.J.; Kim, B.Y.; Ku, J.M.; Chang, K.H.; Lee, C. Progressive and Prospective Technology for Cloud Seeding Experiment by Unmanned Aerial Vehicle and Atmospheric Research Aircraft in Korea. Adv. Meteorol. 2022, 2022, 3128657. [Google Scholar] [CrossRef]
- Wu, Y.; Shan, Y.; Lai, Y.; Zhou, S. Method of Calculating Land Surface Temperatures Based on the Low-Altitude UAV Thermal Infrared Remote Sensing Data and the near-Ground Meteorological Data. Sustain. Cities Soc. 2022, 78, 103615. [Google Scholar] [CrossRef]
- Galle, B.; Arellano, S.; Bobrowski, N.; Conde, V.; Fischer, T.P.; Gerdes, G.; Gutmann, A.; Hoffmann, T.; Itikarai, I.; Krejci, T.; et al. A Multi-Purpose, Multi-Rotor Drone System for Long-Range and High-Altitude Volcanic Gas Plume Measurements. Atmos. Meas. Technol. 2021, 14, 4255–4277. [Google Scholar] [CrossRef]
- Verdu, T.; Maury, N.; Narvor, P.; Seguin, F.; Roberts, G.; Couvreux, F.; Cayez, G.; Bronz, M.; Hattenberger, G.; Lacroix, S. Experimental Flights of Adaptive Patterns for Cloud Exploration with UAVs. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 24 October 2020–24 January 2021. [Google Scholar]
Paper | Type | Application | Sensors | Power | Takeoff/Landing | Endurance |
---|---|---|---|---|---|---|
[1,2] [3,4] | Multirotor | Wind measurements | Wind | Battery | VTOL 1 | 15–30 m |
[5] | Fixed-wing | Wind measurements | Wind, PTU 2, Infrared | Battery | HTOL 3 | 2 h |
[6] | Fixed-wing | Hurricane and Tornado research | PTU, Infrared | Battery | Dropped by airplane/Do not recover | 1 h |
[7,8] | Fixed-wing | Hurricane and Tornado research | PTU | Battery | HTOL | 2–3 h |
[9] | Fixed-wing | Generic meteorological measurements | PTU | ICE 4 | HTOL | 10 h |
[10,15] | Multirotor | Generic meteorological measurements | PTU, Wind, Particle concentration | Battery | VTOL | - |
[11] | Multirotor | Generic meteorological measurements | PTU | Battery | VTOL | 28 m |
[12,14] | Multirotor | Generic meteorological measurements | PTU, Wind | Battery | VTOL | 18.5 m |
[13] | Multirotor | Generic meteorological measurements | PTU, UV index, Camera | Battery | VTOL | - |
[16] | Glider | Weather Forecasting Models | PTU | Gliding | HTOL | Up to 5 h |
[17] | Multirotor | Weather Forecasting Models | PTU | Battery | VTOL | 18–20 m |
[18] | Tiltrotor | Cloud seeding | Calcium chloride flares | ICE | VTOL | 5 h |
[19] | Multirotor | Calculation of land surface temperatures | Thermal infrared camera | Battery | VTOL | 38 m |
[20] | Multirotor | Volcanic gas plume measurements | MultiGAS | Battery | VTOL | 30 min |
[21] | Fixed-Wing | Cloud exploration | PTU, Wind, Droplet extinction | Battery | HTOL | 1 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourgelas, C.; Micha, E.; Chatzistavrakis, E.; Voyiatzis, I. Classification of Unmanned Aerial Vehicles in Meteorology: A Survey. Environ. Sci. Proc. 2023, 26, 135. https://doi.org/10.3390/environsciproc2023026135
Mourgelas C, Micha E, Chatzistavrakis E, Voyiatzis I. Classification of Unmanned Aerial Vehicles in Meteorology: A Survey. Environmental Sciences Proceedings. 2023; 26(1):135. https://doi.org/10.3390/environsciproc2023026135
Chicago/Turabian StyleMourgelas, Christos, Evangelia Micha, Emmanouil Chatzistavrakis, and Ioannis Voyiatzis. 2023. "Classification of Unmanned Aerial Vehicles in Meteorology: A Survey" Environmental Sciences Proceedings 26, no. 1: 135. https://doi.org/10.3390/environsciproc2023026135
APA StyleMourgelas, C., Micha, E., Chatzistavrakis, E., & Voyiatzis, I. (2023). Classification of Unmanned Aerial Vehicles in Meteorology: A Survey. Environmental Sciences Proceedings, 26(1), 135. https://doi.org/10.3390/environsciproc2023026135