Investigation of Groundwater Resources Quality for Drinking Purposes Using GWQI and GIS: A Case Study of Ottawa City, Ontario, Canada †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, S.; Murray, R. World Environmental and Water Resources Congress 2020: Water Resources Planning and Management and Irrigation and Drainage; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2020. [Google Scholar] [CrossRef]
- Noori, A.; Bonakdari, H.; Morovati, K.; Gharabaghi, B. Development of optimal water supply plan using integrated fuzzy Delphi and fuzzy ELECTRE III methods—Case study of the Gamasiab basin. Expert Syst. 2020, 37, e12568. [Google Scholar] [CrossRef]
- Salimi, A.H.; Noori, A.; Bonakdari, H.; Samakosh, J.M.; Sharifi, E.; Hassanvand, M.; Gharabaghi, B.; Agharazi, M. Exploring the role of advertising types on improving the water consumption behavior: An application of integrated fuzzy AHP and fuzzy VIKOR method. Sustainability 2020, 12, 1232. [Google Scholar] [CrossRef] [Green Version]
- Noori, A.; Bonakdari, H.; Salimi, A.H.; Gharabaghi, B. A group Multi-Criteria Decision-Making method for water supply choice optimization. Socioecon. Plann. Sci. 2021, 77, 101006. [Google Scholar] [CrossRef]
- Umar, R.; Ahmed, I.; Alam, F. Mapping groundwater vulnerable zones using modified DRASTIC approach of an alluvial aquifer in parts of central Ganga plain, western Uttar Pradesh. J. Geol. Soc. India 2009, 73, 193–201. [Google Scholar] [CrossRef]
- Cloern, J.E. Patterns, pace, and processes of water-quality variability in a long-studied estuary. Limnol. Oceanogr. 2019, 64, S192–S208. [Google Scholar] [CrossRef] [Green Version]
- Radfard, M.; Soleimani, H.; Azhdarpoor, A.; Faraji, H.; Mahvi, A.H. Dataset on assessment of physical and chemical quality of groundwater in rural drinking water, west Azerbaijan Province in Iran. Data Br. 2018, 21, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Güler, C.; Thyne, G.D.; McCray, J.E.; Turner, A.K. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol. J. 2002, 10, 455–474. [Google Scholar] [CrossRef]
- Pour, H.V.; Sayari, M.; Bayat, N.; Forutan, F. Qualitative and Quantitative Evaluation of Groundwater in Isfahan Najaf Abad Study Area. J. Middle East Appl. Sci. Technol.(JMEAST) 2014, 16, 523–530. [Google Scholar]
- Jamshidzadeh, Z.; Mirbagheri, S.A. Evaluation of groundwater quantity and quality in the Kashan Basin, Central Iran. Desalination 2011, 270, 23–30. [Google Scholar] [CrossRef]
- Nickpeyman, V.; Mohammadzadeh, H. Evaluation of spatial variations of groundwater quality in Mashhad Plain using GQI index. Presented at the National Conference on Exploration of Ground Resources. In National Conference on Exploration of Ground Resources; Hamedan University: Hamedan, Iran; 2013. (In Persian)
- Soleimani, S.; Mahmoudi-Gharaei, M.; Ghasemzadeh, F.; Planet, A. Investigation of quality changes of west water resources of the red mountain using GQI quality index in GIS environment. J. Earth Sci. 2013, 89, 175–189. (In Persian) [Google Scholar]
- Sadat-Noori, S.M.; Ebrahimi, K.; Liaghat, A.M. Groundwater quality assessment using the Water Quality Index and GIS in Saveh-Nobaran aquifer, Iran. Environ. Earth Sci. 2014, 71, 3827–3843. [Google Scholar] [CrossRef]
- Alavi, N.; Zaree, E.; Hassani, M.; Babaei, A.A.; Goudarzi, G.; Yari, A.R.; Mohammadi, M.J. Water quality assessment and zoning analysis of Dez eastern aquifer by Schuler and Wilcox diagrams and GIS. Desalination Water Treat. 2016, 57, 23686–23697. [Google Scholar] [CrossRef]
- Farhan, A.F.; Al-Ahmady, K.K.; Al-Masry, N.A.-A. Assessment of Tigris River Water Quality in Mosul for Drinking and Domestic Use by Applying CCME Water Quality Index. IOP Conf. Series: Mater. Sci. Eng. 2020, 737, 012204. [Google Scholar] [CrossRef]
- Pourkhosravani, M.; Gohari, J.; Sayari, N.; Pourkhosravani, M.; Gohari, F.J.; Sayari, N. Groundwater Quality and Suitability for Different Uses in the Sirjan County. Desert Ecosyst. Eng. J. 2021, 3, 43–58. [Google Scholar]
- Ministry of the Environment, Conservation and Parks. Available online: https://www.ontario.ca/page/ministry-environment-conservation-parks (accessed on 15 January 2023).
- Melloul, A.; Collin, M. The ‘principal components’ statistical method as a complementary approach to geochemical methods in water quality factor identification; application to the Coastal Plain aquifer of Israel. J. Hydrol. 1992, 140, 49–73. [Google Scholar] [CrossRef]
- CCME. Canadian Water Quality Guidelines for the Protection of Aquatic Life: CCME Water Quality Index User’s Manual 2017 UPDATE, Canadian Environmental Quality Guidelines. Can. Counc. Minist. Environ. 2017, 1–23. Available online: https://ccme.ca/en/res/wqimanualen.pdf (accessed on 10 October 2020).
- Khan, A.A.; Paterson, R.; Khan, H. Modification and application of the Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) for the communication of drinking water quality data in Newfoundland and Labrador. Water Qual. Res. J. Can. 2004, 39, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Cash, K.; Wright, R. Canadian Water Quality Guidelines for the Protection of Aquatic Life; CCME: Ottawa, ON, Canada, 2001. [Google Scholar]
- Ketata, M.; Gueddari, M.; Bouhlila, R. Use of geographical information system and water quality index to assess groundwater quality in el khairat deep aquifer (enfidha, central east tunisia). Arab. J. Geosci. 2012, 5, 1379–1390. [Google Scholar] [CrossRef]
- Lo, C.P.; Yeung, A.K. Concepts and Techniques of Geographic Information Systems; Pearson Prentice Hall: London, UK, 2007. [Google Scholar]
- Noori, A.; Bonakdari, H.; Hassaninia, M.; Morovati, K.; Khorshidi, I.; Noori, A.; Gharabaghi, B. A reliable GIS-based FAHP-FTOPSIS model to prioritize urban water supply management scenarios: A case study in semi-arid climate. Sustain. Cities Soc. 2022, 81, 103846. [Google Scholar] [CrossRef]
Water Classification | TDS | TH | Na | Cl | SO4 |
---|---|---|---|---|---|
Good | <500 | <250 | <115 | <175 | <145 |
Acceptable | 500–1000 | 250–500 | 115–230 | 175–330 | 145–280 |
Average | 1000–2000 | 500–1000 | 230–460 | 330–700 | 280–580 |
Inappropriate | 200–4000 | 1000–2000 | 460–920 | 700–1400 | 580–1150 |
Completely Inappropriate | 4000–8000 | 2000–4000 | 920–1840 | 1400–2800 | 1150–2240 |
Non-Potable | >8000 | >4000 | >1840 | >2800 | >2240 |
Rank | Water Quality Ranking System |
---|---|
Poor | 0–44.9 |
Marginal | 45–64.9 |
Fair | 65–79.9 |
Good | 80–94.9 |
Excellent | 95–100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noori, A.; Ranjbari, F.; Bonakdari, H. Investigation of Groundwater Resources Quality for Drinking Purposes Using GWQI and GIS: A Case Study of Ottawa City, Ontario, Canada. Environ. Sci. Proc. 2023, 25, 74. https://doi.org/10.3390/ECWS-7-14314
Noori A, Ranjbari F, Bonakdari H. Investigation of Groundwater Resources Quality for Drinking Purposes Using GWQI and GIS: A Case Study of Ottawa City, Ontario, Canada. Environmental Sciences Proceedings. 2023; 25(1):74. https://doi.org/10.3390/ECWS-7-14314
Chicago/Turabian StyleNoori, Amir, Farzad Ranjbari, and Hossein Bonakdari. 2023. "Investigation of Groundwater Resources Quality for Drinking Purposes Using GWQI and GIS: A Case Study of Ottawa City, Ontario, Canada" Environmental Sciences Proceedings 25, no. 1: 74. https://doi.org/10.3390/ECWS-7-14314