Relationships between the Content of C, N, P and Their Stoichiometry in the Soils of Selected Reserves of the Białowieża Primeval Forest †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Laboratory Analysis
- Soil pH in 0.01 mol/L CaCl2 by the potentiometric method, according to PN-EN ISO 10390:1997 [11] using a pH meter.
- Total nitrogen (TN) by the high temperature combustion method with TCD detection according to PN-ISO 13878:2002 [12] using an elemental analyzer.
- Total carbon (TC) by the method of high temperature combustion with TCD detection according to PN-ISO 10694:2002 [13] using an elemental analyzer.
- Phosphorus (TP) by the method of atomic emission spectrometry with excitation in inductively coupled plasma (ICP-OES) according to PN-EN ISO 11885:2009 [14].
2.3. Statistical Analyses
3. Results and Discussion
4. Conclusions
- A lose relationship was demonstrated between the content of TC and TN in the soil, which was confirmed by positive linear relationships for the soil from the 0–5 cm layer (r = 0.965 ***, r2 = 0.931) and 5–40 cm depth (r = 0.959 ***, r2 = 0.919).
- The C:N ratio in the soil of Białowieża Primeval Forest Reserves ranged from 17.40 to 24.5. The largest C:N range was found in the soil of Lipiny Reserve and may indicate slow processes of decomposition and accumulation of organic matter in the soil caused by a very acid soil reaction ( 3.9).
- The studied soils had a wide range of C:P and ranged from 114.4 ± 143.4 to 180.0 ± 229.7 for Koryciny and Dębowy Grąd Reserves, and the mean value for litter was 547.8 ± 269.60. A significant value of this C:P ratio > 300 may favor the increase in biological sorption of phosphorus in Lipiny Reserve soil.
- Forest management and especially leaving dead wood in the reserves can significantly contribute to carbon sequestration and become a source of nutrients necessary for maintaining biodiversity in forest ecosystems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chastain, R.A.; Currie, W.S.; Townsend, P.A. Carbon sequestration and nutrient cycling implications of thee evergreen understory layer in Appalachian forests. For. Ecol. Manag. 2006, 231, 63–77. [Google Scholar] [CrossRef]
- Filipiak, M.; Sobczyk, Ł.; Weiner, J. Fungal transformation of tree stumps into a suitable resource for xylophagous beetles via changes in elemental ratios. Insects 2016, 7, 13. [Google Scholar] [CrossRef]
- Lal, R. Forest soil and carbon sequestration. For. Ecol. Manag. 2015, 220, 242–258. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, H.; Wang, W.; Zhu, C.; Cui, D.; Ye, Z. Transient Flooding and Soil Covering Interfere with Decomposition Dynamics of Populus euphratica Leaf Litter: Changes of Mass Loss and Stoichiometry of C, N, P, and K. 13, 476 Forests File. 2020. Available online: https://www.mdpi.com/1999-4907/13/3/476/htm (accessed on 18 March 2022).
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 2014, 65, 10–21. [Google Scholar] [CrossRef]
- Fan, H.; Wu, J.; Yuan, Y.; Hu, I.; Cai, Q. Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant Soil 2015, 392, 127–138. [Google Scholar] [CrossRef]
- Trentini, C.P.; Campanello, P.I.; Villagra, M.; Ritter, L.; Ares, A.; Goldstein, G. Thinning of loblolly pine plantations in subtropical Argentina: Impact on microclimate and understory vegetation. For. Ecol. Manag. 2017, 384, 236–247. [Google Scholar] [CrossRef]
- Zielony, R.; Kliczkowska, A. Regionalizacja Przyrodniczo-Leśna Polski 2010; Wydawca Centrum Informacyjne Lasów Państwowych: Warszawa, Poland, 2012; pp. 247–262. [Google Scholar]
- Woś, A. Klimat Polski w Drugiej Połowie XX Wieku; Wydawnictwo Naukowe UAM Poznań: Poznań, Poland, 2010. [Google Scholar]
- PN-ISO 11464:1999; Jakość Gleby—Wstępne Przygotowanie Próbek do Badań Fizyczno-Chemicznych. Polski Komitet Normalizacyjny: Warsaw, Poland, 1999.
- PN-EN ISO 10390:1997; Soil Quality. Determination of pH. Polski Komitet Normalizacyjny: Warsaw, Poland, 1997.
- PN-ISO 13878:2002; Soil Quality. Determination of Total Nitrogen by Dry Combustion (“Elemental Analysis”). Polski Komitet Normalizacyjny: Warsaw, Poland, 2002.
- PN-ISO 10694:2002; Soil Quality. Determination of Organic and Total Carbon Dry Combustion (“Elemental Analysis”). Polski Komitet Normalizacyjny: Warsaw, Poland, 2002.
- PN-EN ISO 11885:2009; Water Quality. Determination of Select Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) (ISO 11885:2007). Polski Komitet Normalizacyjny: Warsaw, Poland, 2009.
- Bueis, T.; Bravo, F.; Pando, V.; Kissi, Y.A.; Turrion, M.B. Phospohorus Availability in Relation in Soil Properties and Forest Productivity in Pinus sylvestris L. Plantations. Annals of Forest Science. 2019; Volume 97. Available online: https://annforsci.biomedcentral.com/articles/10.1007/s13595-019-0882 (accessed on 18 October 2019).
- Lasota, J.; Błońska, E.; Piaszczyk, W.; Wiecheć, M. How the deadwood of different tree species in various stages of decomposition affected nutrient dynamics? J. Soils Sediments 2018, 18, 2759–2769. [Google Scholar] [CrossRef]
- Magnússon, R.Í.; Tietema, A.; Cornelissen, J.H.C.; Hefting, M.M.; Kalbitz, K. Sequestration of carbon from coarse woody debris in forest soils. For. Ecol. Manag. 2016, 377, 1–15. [Google Scholar] [CrossRef]
Name of the Reserve and It’s Area | Commune (a) and District (b) | Number of Soil Profils | Average Age of the Trees | Forest Habitat Type | Dominant Species of Trees | Type of Soils |
---|---|---|---|---|---|---|
“Krajobrazowy Władysława Szafera” 1343.91 ha | a:Hajnówka b: Hajnówka | 12 | 123 | Bs BMśw BMw | Picea abies L., Quercus petraea, Quercus robur, Pinus silvestris, Betula pendula, Ulmus minor Mill. | Brown soils (BR),Rusty soils (RD) |
“Lipiny” 56.28 ha | a: Hajnówka b: Hajnówka | 6 | 110 | BMśw | Quercus petraea, Quercus robur, Carpinus betulus | Leached brown soils (BBwy) |
“Dębowy Grąd” 100.47 ha | a: Hajnówka b: Hajnówka | 7 | 119 | LM | Quercus petraea, Quercus robur, Fraxinus excelsior L., (Picea abies L., Acer platanoides L., Carpinus betulus L. | Typical soils lessives |
“Koryciny” 87.72 ha | a: Grodzisk b: Rudka | 6 | 168 | LM | Quercus petraea, Carpinus betulus L.) | Lessive soils (P) (34.4%) Rusty soils (RD) (32.7%) Pseudogley soils (OG) 6.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burzyńska, I.; Sztabkowski, K. Relationships between the Content of C, N, P and Their Stoichiometry in the Soils of Selected Reserves of the Białowieża Primeval Forest. Environ. Sci. Proc. 2022, 22, 9. https://doi.org/10.3390/IECF2022-13064
Burzyńska I, Sztabkowski K. Relationships between the Content of C, N, P and Their Stoichiometry in the Soils of Selected Reserves of the Białowieża Primeval Forest. Environmental Sciences Proceedings. 2022; 22(1):9. https://doi.org/10.3390/IECF2022-13064
Chicago/Turabian StyleBurzyńska, Irena, and Krzysztof Sztabkowski. 2022. "Relationships between the Content of C, N, P and Their Stoichiometry in the Soils of Selected Reserves of the Białowieża Primeval Forest" Environmental Sciences Proceedings 22, no. 1: 9. https://doi.org/10.3390/IECF2022-13064
APA StyleBurzyńska, I., & Sztabkowski, K. (2022). Relationships between the Content of C, N, P and Their Stoichiometry in the Soils of Selected Reserves of the Białowieża Primeval Forest. Environmental Sciences Proceedings, 22(1), 9. https://doi.org/10.3390/IECF2022-13064