Climate Change, Forest Mortality, and the Need for a Solid Scientific Foundation in Forestry †
Abstract
:1. Introduction
2. Mortality, Environmental Change, and Survival Fitness
3. Survivotype Tolerances and Variation in Intrinsic Survival Fitness
4. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cortés, A.J.; Restrepo-Montoya, M.; Bedoya-Canas, L.E. Modern strategies to assess and breed forest tree adaptation to changing climate. Front. Plant Sci. 2020, 11, 583323. [Google Scholar] [CrossRef]
- Jia, K.-H.; Zhao, W.; Maier, P.A.; Hu, X.-G.; Jin, Y.; Zhou, S.-S.; Jiao, S.-Q.; El-Kassaby, Y.A.; Wang, T.; Wang, X.-R.; et al. Landscape genomics predicts climate change-related genetic offset for the widespread Platycladus orientalis (Cupressaceae). Evol. Appl. 2020, 13, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.K.; Luikart, G.; McKelvey, K.S.; Cushman, S.A. Landscape genomics: A brief perspective. In Spatial Complexity, Informatics, and Wildlife Conservation; Cushman, S.A., Huettmann, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- De Kort, H.; Vandepitte, K.; Bruun, H.H.; Closset-Kopp, D.; Honnay, O.; Mergeay, J. Landscape genomics and a common garden trial reveal adaptive differentiation to temperature across Europe in the tree species Alnus glutinosa. Mol. Ecol. 2014, 23, 4709–4721. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Du, F.K. Landscape genomics in tree conservation under a changing environment. Front. Plant Sci. 2022, 13, 822217. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Peng, Z.; Zhao, X.; Li, Y.; Liu, K.; Arus, P.; Fang, W.; Chen, C.; Wang, X.; Wu, J.; et al. Chromosome-level genome assemblies of four wild peach species provide insights into genome evolution and genetic basis of stress resistance. BMC Biol. 2022, 20, 139. [Google Scholar] [CrossRef]
- Manion, P.D. Tree Disease Concepts, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1991; ISBN 9780139294235. [Google Scholar]
- Pirttilä, A.M.; Frank, A.C. (Eds.) Endophytes of Forest Trees, Biology and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 86, ISBN 978-3-319-89832-2. [Google Scholar]
- Rabiey, M.; Hailey, L.E.; Roy, S.R.; Grenz, K.; Al-Zadjali, M.A.S.; Barrett, G.A.; Jackson, R.W. Endophytes vs tree pathogens and pests: Can they be used as biological control agents to improve tree health? Eur. J. Plant Pathol. 2019, 155, 711–729. [Google Scholar] [CrossRef]
- Meyer, K. Factor-analytic models for genotype × environment type problems and structured covariance matrices. Genet. Sel. Evol. 2009, 41, 21. [Google Scholar] [CrossRef] [PubMed]
- van Eeuwijk, F.A.; Cooper, M.; DeLacy, I.H.; Ceccarelli, S.; Grando, S. Some vocabulary and grammar for the analysis of multi-environment trials, as applied to the analysis of FPB and PPB trials. Euphytica 2001, 122, 477–490. [Google Scholar] [CrossRef]
- Savidge, R.A. A healthy forest is a productive forest. For. Chron. 1997, 73, 749–752. [Google Scholar] [CrossRef]
- Steeves, V.J.; Savidge, R.A. Cambial coniferin content as an indicator of the health status of conifers. In Cell and Molecular Biology of Wood Formation; Savidge, R.A., Barnet, J., Napier, R., Eds.; BIOS Scientific Publ.: Oxford, UK, 2000; pp. 57–65. [Google Scholar]
- Tarmu, T.; Kiviste, A.; Näkk, A.; Sims, A.; Laarmann, D. The application of sonic tomography (PiCUS 3 sonic tomograph) to detect and quantify hidden wood decay in managed Norway spruce stands. Forests 2022, 13, 1260. [Google Scholar] [CrossRef]
- Savidge, R.A. Learning from the past—The origin of wood. For. Chron. 2008, 84, 498–503. [Google Scholar] [CrossRef]
- Burley, J. Tree breeding principles, a historical overview of forest tree improvement. In Encyclopedia of Forest Sciences; Burley, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 1532–1538. ISBN 978-0-12-145160-8. [Google Scholar]
- Wheeler, N.C.; Steiner, K.C.; Schlarbaum, S.E.; Neale, D.B. The evolution of forest genetics and tree improvement research in the United States. J. For. 2015, 113, 500–510. [Google Scholar] [CrossRef]
- Huang, J.; Hammerbacher, A.; Gershenzon, J.; van Dam, N.M.; Sala, A.; McDowell, N.G.; Chowdhury, S.; Gleixner, G.; Trumbore, S.; Hartmann, H. Storage of carbon reserves in spruce trees is prioritized over growth in the face of carbon limitation. Proc. Natl. Acad. Sci. USA 2021, 118, e2023297118. [Google Scholar] [CrossRef] [PubMed]
- Van den Driessche, R. Prediction of cold hardiness in Douglas fir seedlings by index of injury and conductivity methods. Can. J. For. Res. 1976, 6, 511–515. [Google Scholar] [CrossRef]
- Warrington, I.J.; Rook, D.A. Evaluation of techniques used in determining frost tolerance of forest planting stock: A review. N. Z. J. For. Sci. 1980, 10, 116–132. [Google Scholar]
- Schepaschenko, D.; See, L.; Lesiv, M.; Bastin, J.-F.; Mollicone, D.; Tsendbazar, N.-E.; Bastin, L.; McCallum, I.; Bayas, J.C.L.; Baklanov, A.; et al. Recent advances in forest observation with visual interpretation of very high-resolution imagery. Surv. Geophys. 2019, 40, 839–862. [Google Scholar] [CrossRef]
Anthropogenic Harvesting, land clearing, deliberate destruction Road salt, herbicides, over fertilization, toxic chemicals Soil compaction, root system severing Fire (deliberate, accidental) Non-Anthropogenic Soil movement: erosion, avalanches, landslides Soil flooding, freezing Lake outbursts, volcanic eruptions, glacier flow Tornadoes, hurricanes, ice storms, Radiation: heat, cold, sunscald, UV, fire (e.g., lightning) Water and nutrient deficiencies Mammals, birds, insects, nematodes, other small animals Fungi, bacteria, phytoplasma, viruses |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savidge, R.A. Climate Change, Forest Mortality, and the Need for a Solid Scientific Foundation in Forestry. Environ. Sci. Proc. 2022, 22, 44. https://doi.org/10.3390/IECF2022-13072
Savidge RA. Climate Change, Forest Mortality, and the Need for a Solid Scientific Foundation in Forestry. Environmental Sciences Proceedings. 2022; 22(1):44. https://doi.org/10.3390/IECF2022-13072
Chicago/Turabian StyleSavidge, Rodney Arthur. 2022. "Climate Change, Forest Mortality, and the Need for a Solid Scientific Foundation in Forestry" Environmental Sciences Proceedings 22, no. 1: 44. https://doi.org/10.3390/IECF2022-13072
APA StyleSavidge, R. A. (2022). Climate Change, Forest Mortality, and the Need for a Solid Scientific Foundation in Forestry. Environmental Sciences Proceedings, 22(1), 44. https://doi.org/10.3390/IECF2022-13072