Integration of a Probabilistic and a Geomorphic Method for the Optimization of Flood Detention Basins Design †
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Economic Optimization of the Detention Dam
3.1.1. The Conceptual Scheme
3.1.2. Construction Costs
3.1.3. Average Annual Damages
3.1.4. Hydrologic and Hydraulic Simulations
4. Results
4.1. Optimization of the Detention Dam Parameters
4.2. Validation of the Optimum Detention Dam Design
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rasekh, A.; Afshar, A.; Afshar, M.H. Risk-cost optimization of hydraulic structures: Methodology and case study. Water Resour. Manag. 2010, 24, 2833–2851. [Google Scholar] [CrossRef]
- Ganoulis, J. Risk-based floodplain management: A case study from Greece. Int. J. River Basin Manag. 2003, 1, 41–47. [Google Scholar] [CrossRef]
- Tung, Y.; Mays, L.W. Optimal risk-based design of flood levee systems. Water Resour. Res. 1981, 17, 843–852. [Google Scholar] [CrossRef]
- Travis, Q.B.; Mays, L.W. Optimizing retention basin networks. J. Water Resour. Plan. Manag. 2008, 134, 432–439. [Google Scholar] [CrossRef]
- Yazdi, J.; Neyshabouri, S.A.A.S. Optimal design of flood-control multi-reservoir system on a watershed scale. Nat. hazards 2012, 63, 629–646. [Google Scholar] [CrossRef]
- Manfreda, S.; Miglino, D.; Albertini, C. Impact of Flood Control Systems on the Probability Distribution of Floods. Hydrol. Earth Syst. Sci. Discuss. 2021, 2021, 1–20. [Google Scholar]
- Samela, C.; Troy, T.J.; Manfreda, S. Geomorphic classifiers for flood-prone areas delineation for data-scarce environments. Adv. Water Resour. 2017, 102, 13–28. [Google Scholar] [CrossRef]
- Santo, A.; Santangelo, N.; Beneduce, A.; Iovane, F. Pericolosità connessa a processi alluvionali in aree pedemontane: Il caso di Castellamare di Stabia in Penisola Sorrentina. Il Quaternario 2002, 15, 23–37. [Google Scholar]
- Vennari, C.; Parise, M.; Santangelo, N.; Santo, A. A database on flash flood events in Campania, southern Italy, with an evaluation of their spatial and temporal distribution. Nat. Hazards Earth Syst. Sci. 2016, 16, 2485–2500. [Google Scholar] [CrossRef] [Green Version]
- Santo, A.; Santangelo, N.; Di Crescenzo, G.; Scorpio, V.; Falco, M.; Chirico, G.B. Flash flood occurrence and magnitude assessment in an alluvial fan context: The October 2011 event in the Southern Apennines. Nat. Hazards 2015, 78, 417–442. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, B.; Kim, S.; Kim, D. Design procedure for determining optimal length of side-weir in flood control detention basin considering bed roughness coefficient. J. Irrig. Drain. Eng. 2016, 142, 6016011. [Google Scholar] [CrossRef]
- Petheram, C.; Mcmahon, T. Dams, dam costs and damnable cost overruns. J. Hydrol. X 2019, 3, 100026. [Google Scholar] [CrossRef]
- Grimaldi, S.; Nardi, F.; Piscopia, R.; Petroselli, A.; Apollonio, C. Continuous hydrologic modelling for design simulation in small and ungauged basins: A step forward and some tests for its practical use. J. Hydrol. 2021, 595, 125664. [Google Scholar] [CrossRef]
- Naso, S. Novel Approaches for Flood Risk Assessment Using Exposure-Vulnerability Matrices. Ph.D Thesis, Università degli Studi di Palermo, Palermo, Italy, February 2016. [Google Scholar]
- Di Baldassarre, G.; Viglione, A.; Carr, G.; Kuil, L.; Salinas, J.L.; Blöschl, G. Socio-hydrology: Conceptualising human-flood interactions. Hydrol. Earth Syst. Sci. 2013, 17, 3295. [Google Scholar] [CrossRef] [Green Version]
- Samela, C.; Manfreda, S.; De Paola, F.; Maurizio, G.; Sole, A.; Fiorentino, M. DEM-Based Approaches for the Delineation of Flood-Prone Areas in an Ungauged Basin in Africa. J. Hydrol. Eng. 2016, 21, 6015010. [Google Scholar] [CrossRef]
- Albertini, C.; Miglino, D.; Iacobellis, V.; De Paola, F.; Manfreda, S. Delineation of flood-prone areas in cliffed coastal regions through a procedure based on the geomorphic flood index. J. Flood Risk Manag. 2021, 15, e12766. [Google Scholar] [CrossRef]
- De Luca, D.L.; Petroselli, A. STORAGE (STOchastic RAinfall GEnerator): A user-friendly software for generating long and high-resolution rainfall time series. Hydrology 2021, 8, 76. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albertini, C.; Miglino, D.; Bove, G.; De Falco, M.; De Paola, F.; Dinuzzi, A.M.; Petroselli, A.; Pugliese, F.; Samela, C.; Santo, A.; et al. Integration of a Probabilistic and a Geomorphic Method for the Optimization of Flood Detention Basins Design. Environ. Sci. Proc. 2022, 21, 9. https://doi.org/10.3390/environsciproc2022021009
Albertini C, Miglino D, Bove G, De Falco M, De Paola F, Dinuzzi AM, Petroselli A, Pugliese F, Samela C, Santo A, et al. Integration of a Probabilistic and a Geomorphic Method for the Optimization of Flood Detention Basins Design. Environmental Sciences Proceedings. 2022; 21(1):9. https://doi.org/10.3390/environsciproc2022021009
Chicago/Turabian StyleAlbertini, Cinzia, Domenico Miglino, Gianluca Bove, Melania De Falco, Francesco De Paola, Alessandro Maria Dinuzzi, Andrea Petroselli, Francesco Pugliese, Caterina Samela, Antonio Santo, and et al. 2022. "Integration of a Probabilistic and a Geomorphic Method for the Optimization of Flood Detention Basins Design" Environmental Sciences Proceedings 21, no. 1: 9. https://doi.org/10.3390/environsciproc2022021009
APA StyleAlbertini, C., Miglino, D., Bove, G., De Falco, M., De Paola, F., Dinuzzi, A. M., Petroselli, A., Pugliese, F., Samela, C., Santo, A., Speranza, G., Gioia, A., & Manfreda, S. (2022). Integration of a Probabilistic and a Geomorphic Method for the Optimization of Flood Detention Basins Design. Environmental Sciences Proceedings, 21(1), 9. https://doi.org/10.3390/environsciproc2022021009