Flood Susceptibility Mapping Using a Deep Neural Network Model: The Case Study of Southern Italy †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Flood Inventory Map and Flood Conditioning Factors
2.3. Deep Neural Network
2.4. Performance Criteria
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manfreda, S.; Samela, C. A digital elevation model based method for a rapid estimation of flood inundation depth. J. Flood Risk Manag. 2019, 12, e12541. [Google Scholar] [CrossRef]
- Chen, W.; Hong, H.; Li, S.; Shahabi, H.; Wang, Y.; Wang, X.; Ahmad, B.B. Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. J. Hydrol. 2019, 575, 864–873. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, H.; Chen, W.; Li, S.; Panahi, M.; Khosravi, K.; Shirzadi, A.; Shahabi, H.; Panahi, S.; Costache, R. Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. J. Environ. Manag. 2019, 247, 712–729. [Google Scholar] [CrossRef] [PubMed]
- Tehrany, M.S.; Pradhan, B.; Mustafa, N.J. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J. Hydrol. 2014, 512, 332–343. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Shattri, M.; Noordin, A. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena 2015, 125, 91–101. [Google Scholar] [CrossRef]
- ISTAT. Circoscrizioni Statistiche (Metodi e Norme). Serie C, 1958, n. 1, agosto 1958. Available online: https://ebiblio.istat.it/SebinaOpac/resource/circoscrizioni-statistiche/IST0011217 (accessed on 1 July 2022).
- Versace, P.; Ferrari, E.; Fiorentino, M.; Gabriele, S.; Rossi, F. La valutazione delle piene in Calabria. Cosenza, 1989. Available online: http://www.idrologia.polito.it/gndci/rapportiPdf/Vapi_Nazionale.pdf (accessed on 1 July 2022).
- Jasiewicz, J.; Stepinski, T.F. Geomorphons—A pattern recognition approach to classification and mapping of landforms. Geomorphology 2013, 182, 147–156. [Google Scholar] [CrossRef]
- Amadei, M.; Bagnaia, R.; Lureti, L.; Lugeri, F.; Lugeri, N.; Feoli, E.; Dragan, M.; Fernetti, M.; Oriolo, G. Il Progetto Carta della Natura alla Scala 1:250.000: Metodologia di Realizzazione. 2003. Available online: https://www.isprambiente.gov.it/contentfiles/00003500/3552-manuali-2003-17.pdf/ (accessed on 1 July 2022).
- Balestra, F. Flood Susceptibility Mapping Using a Deep Neural Network Model: The Case Study of Southern Italy. Master’s Thesis, Politecnico di Milano, Milano, Italy, 2022. Available online: https://www.politesi.polimi.it/handle/10589/187572 (accessed on 1 July 2022).
- Souissi, D.; Zouhri, L.; Hammami, S.; Msaddek, M.H.; Zghibi, A.; Dlala, M. GIS-Based MCDM—AHP Modeling for Flood Susceptibility Mapping of Arid Areas, Southeastern Tunisia. Geocarto Int. 2020, 35, 991–1017. [Google Scholar] [CrossRef]
- Arik, S.Ö.; Pfister, T. TabNet: Attentive Interpretable Tabular Learning. In Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, online, 2–9 February; pp. 6679–6687.
- Islam, A.R.M.T.; Talukdar, S.; Mahato, S.; Kundu, S.; Eibek, K.U.; Pham, Q.B.; Kuriqi, A.; Linh, N.T.T. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci. Front. 2020, 12, 101075. [Google Scholar] [CrossRef]
Physiographic Unit | Flood Conditioning Factors | Non-Linear Correlations | Testing Accuracy | Testing AUC |
---|---|---|---|---|
Lowland | SPI, GFI, relative elevation, HSG | / | 0.984 | 0.998 |
Tableland | Physio. types, relative elevation, CN, TWI | relative elevation—TWI | 0.981 | 0.998 |
Hillside | GFI, relative elevation, elevation, HSG | / | 0.966 | 0.995 |
Mountain | elevation, CLC, GFI, TWI | / | 0.982 | 0.999 |
Islands | / | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balestra, F.; Del Vecchio, M.; Pirone, D.; Pedone, M.A.; Spina, D.; Manfreda, S.; Menduni, G.; Bignami, D.F. Flood Susceptibility Mapping Using a Deep Neural Network Model: The Case Study of Southern Italy. Environ. Sci. Proc. 2022, 21, 36. https://doi.org/10.3390/environsciproc2022021036
Balestra F, Del Vecchio M, Pirone D, Pedone MA, Spina D, Manfreda S, Menduni G, Bignami DF. Flood Susceptibility Mapping Using a Deep Neural Network Model: The Case Study of Southern Italy. Environmental Sciences Proceedings. 2022; 21(1):36. https://doi.org/10.3390/environsciproc2022021036
Chicago/Turabian StyleBalestra, Filippo, Michele Del Vecchio, Dina Pirone, Maria Antonia Pedone, Danilo Spina, Salvatore Manfreda, Giovanni Menduni, and Daniele Fabrizio Bignami. 2022. "Flood Susceptibility Mapping Using a Deep Neural Network Model: The Case Study of Southern Italy" Environmental Sciences Proceedings 21, no. 1: 36. https://doi.org/10.3390/environsciproc2022021036
APA StyleBalestra, F., Del Vecchio, M., Pirone, D., Pedone, M. A., Spina, D., Manfreda, S., Menduni, G., & Bignami, D. F. (2022). Flood Susceptibility Mapping Using a Deep Neural Network Model: The Case Study of Southern Italy. Environmental Sciences Proceedings, 21(1), 36. https://doi.org/10.3390/environsciproc2022021036