Stress-Testing Alternative Water Quality Sensor Designs under Cyber-Physical Attack Scenarios †
Abstract
:1. Introduction
2. Case Study and Stress-Testing Methodology
2.1. L-Town Case Study
2.2. Alternative Water Quality Sensor Placement Strategies Using TEVA-SPOT
- Mean extent of contamination (ec);
- Mean mass of contaminant consumed (mc);
- Mean number of failed detections (nfd);
- Mean time to detection (td).
2.3. Stress-Testing Alternative Designs against Cyber-Physical Attacks
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Clark, R.M.; Deininger, R.A. Protecting the Nation’s Critical Infrastructure: The Vulnerability of U.S. Water Supply Systems. J. Contingencies Cris. Manag. 2000, 8, 73–80. [Google Scholar] [CrossRef]
- Mac Kenzie, W.R.; Hoxie, N.J.; Proctor, M.E.; Gradus, M.S.; Blair, K.A.; Peterson, D.E.; Kazmierczak, J.J.; Addiss, D.G.; Fox, K.R.; Rose, J.B.; et al. A Massive Outbreak in Milwaukee of Cryptosporidium Infection Transmitted through the Public Water Supply. N. Engl. J. Med. 1994, 331, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Salomons, E.; Ostfeld, A. A framework for real-time disinfection plan assembling for a contamination event in water distribution systems. Water Res. 2020, 174, 115625. [Google Scholar] [CrossRef] [PubMed]
- Ostfeld, A.; Salomons, E. Optimal Layout of Early Warning Detection Stations for Water Distribution Systems Security. J. Water Resour. Plan. Manag. 2004, 130, 377–385. [Google Scholar] [CrossRef]
- Gleick, P.H. Water and terrorism. Water Policy 2006, 8, 481–503. [Google Scholar] [CrossRef] [Green Version]
- Ginsberg, M.D.; Hock, V.F. Terrorism and security of water distribution systems: A primer. Def. Secur. Anal. 2004, 20, 373–380. [Google Scholar] [CrossRef]
- Pelekanos, N.; Nikolopoulos, D.; Makropoulos, C. Simulation and vulnerability assessment of water distribution networks under deliberate contamination attacks. Urban Water J. 2021, 18, 209–222. [Google Scholar] [CrossRef]
- Moraitis, G.; Nikolopoulos, D.; Bouziotas, D.; Lykou, A.; Karavokiros, G.; Makropoulos, C. Quantifying Failure for Critical Water Infrastructures under Cyber-Physical Threats. J. Environ. Eng. 2020, 146, 04020108. [Google Scholar] [CrossRef]
- Kessler, A.; Ostfeld, A.; Sinai, G. Detecting Accidental Contaminations in Municipal Water Networks. J. Water Resour. Plan. Manag. 1998, 124, 192–198. [Google Scholar] [CrossRef]
- Watson, J.P.; Greenberg, H.J.; Hart, W.E. A multiple-objective analysis of sensor placement optimization in water networks. In Critical Transitions in Water and Environmental Resources Management; American Society of Civil Engineers: Reston, VA, USA, 2004; pp. 4609–4618. [Google Scholar] [CrossRef]
- Ostfeld, A.; Salomons, E. Sensor Network Design Proposal for the Battle of the Water Sensor Networks (BWSN). In Proceedings of the Water Distribution Systems Analysis Symposium, Cincinnati, OH, USA, 27–30 August 2006. [Google Scholar]
- Berry, J.; Boman, E.; Riesen, L.A.; Hart, W.E.; Phillips, C.A.; Watson, J.-P. User’s Manual: TEVA-SPOT Toolkit 2.5.2; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2012.
- Taormina, R.; Galelli, S.; Tippenhauer, N.O.; Salomons, E.; Ostfeld, A. Characterizing Cyber-Physical Attacks on Water Distribution Systems. J. Water Resour. Plan. Manag. 2017, 143, 04017009. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Moraitis, G.; Bouziotas, D.; Lykou, A.; Karavokiros, G.; Makropoulos, C. Cyber-Physical Stress-Testing Platform for Water Distribution Networks. J. Environ. Eng. 2020, 146, 04020061. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Ostfeld, A.; Salomons, E.; Makropoulos, C. Resilience Assessment of Water Quality Sensor Designs under Cyber-Physical Attacks. Water 2021, 13, 647. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Moraitis, G.; Makropoulos, C. 7. Strategic and Tactical Cyber-Physical Security for Critical Water Infrastructures. In Cyber-Physical Threat Intelligence for Critical Infrastructures Security: Securing Critical Infrastructures in Air Transport, Water, Gas, Healthcare, Finance and Industry; Soldatos, J., Praça, I., Jovanovic, A., Eds.; Now Publishers: Boston, MA, USA; Delft, The Netherlands, 2021; pp. 159–187. ISBN 978-1-68083-823-7. [Google Scholar] [CrossRef]
- Moraitis, G.; Nikolopoulos, D.; Koutiva, I.; Tsoukalas, I.; Karavokyros, G.; Makropoulos, C. The PROCRUSTES testbed: Tackling cyber-physical risk for water systems. In Proceedings of the EGU General Assembly 2021, Vienna, Austria, 19–30 April 2021; p. EGU21-14903. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, F.; Kapelan, Z.; Savic, D.; He, G.; Ma, Y. Assessing the global resilience of water quality sensor placement strategies within water distribution systems. Water Res. 2020, 172, 115527. [Google Scholar] [CrossRef] [PubMed]
- Nikolopoulos, D.; Makropoulos, C. Stress-testing water distribution networks for cyber-physical attacks on water quality. Urban Water J. 2022, 19, 256–270. [Google Scholar] [CrossRef]
- Makropoulos, C.; Nikolopoulos, D.; Palmen, L.; Kools, S.; Segrave, A.; Vries, D.; Koop, S.; van Alphen, H.J.; Vonk, E.; van Thienen, P.; et al. A resilience assessment method for urban water systems. Urban Water J. 2018, 15, 316–328. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; van Alphen, H.-J.; Vries, D.; Palmen, L.; Koop, S.; van Thienen, P.; Medema, G.; Makropoulos, C. Tackling the “New Normal”: A Resilience Assessment Method Applied to Real-World Urban Water Systems. Water 2019, 11, 330. [Google Scholar] [CrossRef] [Green Version]
- Nikolopoulos, D.; Kossieris, P.; Tsoukalas, I.; Makropoulos, C. Stress-Testing Framework for Urban Water Systems: A Source to Tap Approach for Stochastic Resilience Assessment. Water 2022, 14, 154. [Google Scholar] [CrossRef]
Criticality Rank | ec | mc | td | nfd |
---|---|---|---|---|
1 | n62 | n93 | n62 | n1 |
2 | n264 | n1 | n1 | n215 |
3 | n188 | n527 | n215 | n4 |
4 | n221 | n264 | n4 | n50 |
5 | n157 | n4 | n527 | n25 |
6 | n286 | n215 | n50 | n527 |
7 | n93 | n50 | n339 | n750 |
8 | n313 | n25 | n25 | n253 |
9 | n18 | n576 | n264 | n576 |
10 | n104 | n104 | n576 | n83 |
Sensor Design | WNP | WR (95th perc) | WR (50th perc) | WR (5th perc) |
---|---|---|---|---|
ec | 0.685 | 0.665 | 0.591 | 0.420 |
mc | 0.728 | 0.663 | 0.608 | 0.490 |
td | 0.695 | 0.642 | 0.598 | 0.496 |
nfd | 0.685 | 0.628 | 0.573 | 0.446 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolopoulos, D.; Moraitis, G.; Karavokiros, G.; Bouziotas, D.; Makropoulos, C. Stress-Testing Alternative Water Quality Sensor Designs under Cyber-Physical Attack Scenarios. Environ. Sci. Proc. 2022, 21, 17. https://doi.org/10.3390/environsciproc2022021017
Nikolopoulos D, Moraitis G, Karavokiros G, Bouziotas D, Makropoulos C. Stress-Testing Alternative Water Quality Sensor Designs under Cyber-Physical Attack Scenarios. Environmental Sciences Proceedings. 2022; 21(1):17. https://doi.org/10.3390/environsciproc2022021017
Chicago/Turabian StyleNikolopoulos, Dionysios, Georgios Moraitis, George Karavokiros, Dimitrios Bouziotas, and Christos Makropoulos. 2022. "Stress-Testing Alternative Water Quality Sensor Designs under Cyber-Physical Attack Scenarios" Environmental Sciences Proceedings 21, no. 1: 17. https://doi.org/10.3390/environsciproc2022021017