Optimal Regulation of Variable Speed Pumps in Sewer Systems †
Abstract
:1. Introduction
2. The Problem Formulation
3. The Optimization Models
3.1. The BONMIN Package
3.2. The Proposed GA–PDSM
4. The Employed Pump
5. Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Goldstein, R.; Smith, W. Water & Sustainability: U.S. Electricity Consumption for Water Supply & Treatment—The Next Half Century. Water Supply 2002, 4, 93. [Google Scholar]
- Bunn, S.M.; Reynolds, L. The energy-efficiency benefits of pump-scheduling optimization for potable water supplies. IBM J. Res. Dev. 2009, 53, 5:1–5:13. [Google Scholar] [CrossRef]
- Castro-Gama, M.; Pan, Q.; Lanfranchi, E.A.; Jonoski, A.; Solomatine, D.P. Pump Scheduling for a Large Water Distribution Network Milan, Italy. Procedia Eng. 2017, 186, 436–443. [Google Scholar] [CrossRef]
- Zhang, Z.; He, X.; Kusiak, A. Data-driven minimization of pump operating and maintenance cost. Eng. Appl. Artif. Intell. 2015, 40, 37–46. [Google Scholar] [CrossRef]
- Plappally, A.K.; Lienhard, V.J.H. Energy requirements for water production, treatment, end use, reclamation, and disposal. Renew. Sustain. Energy Rev. 2012, 16, 4818–4848. [Google Scholar] [CrossRef]
- Zhang, Z.; Kusiak, A.; Zeng, Y.; Wei, X. Modeling and optimization of a wastewater pumping system with data-mining methods. Appl. Energy 2016, 164, 303–311. [Google Scholar] [CrossRef]
- Boulos, P.F.; Wu, Z.; Orr, C.H.; Moore, M.; Hsiung, P.; Thomas, D. Optimal Pump Operation of Water Distribution Systems Using Genetic Algorithms. In Proceedings of the Network & Distributed System Security Symposium, San Diego, CA, USA, 21–24 February 2021; pp. 23–25. [Google Scholar]
- Ostojin, S.; Mounce, S.R.S.; Boxall, J.B.J. An artificial intelligence approach for optimizing pumping in sewer systems. J. Hydroinform. 2011, 13, 295–306. [Google Scholar] [CrossRef]
- Carravetta, A.; Antipodi, L.; Golia, U.; Fecarotta, O. Energy saving in a water supply network by coupling a pump and a Pump As Turbine (PAT) in a turbopump. Water 2017, 9, 62. [Google Scholar] [CrossRef]
- Jowitt, P.W.; Germanopoulos, G. Optimal Pump Scheduling in Water? Supply Networks. J. Water Resour. Plan. Manag. 1992, 118, 406–422. [Google Scholar] [CrossRef]
- Little, K.W.; McCrodden, B.J. Minimization of raw water pumping costs using MILP. J. Water Resour. Plan. Manag. 1989, 115, 511–522. [Google Scholar] [CrossRef]
- Ormsbee, L.E.; Walski, T.M.; Chase, D.V.; Sharp, W.W. Methodology for Improving Pump Operation Efficiency. J. Water Resour. Plan. Manag. 1989, 115, 148–164. [Google Scholar] [CrossRef]
- Tabesh, M. Scheduling and operating costs in water distribution networks. Proc. Inst. Civ. Eng. 2013, 166, 432. [Google Scholar]
- Lansey, K.; Awumah, K. Optimal Pump Operations Considering Pump Switches. J. Water Resour. Plan. Manag. 1994, 120, 17–35. [Google Scholar] [CrossRef]
- Van Zyl, J.E.; Savic, D.A.; Walters, G.A. Operational optimization of water distribution systems using a hybrid genetic algorithm. J. Water Resour. Plan. Manag. 2004, 130, 160–170. [Google Scholar] [CrossRef]
- Hashemi, S.S.; Tabesh, M.; Ataeekia, B. Ant-colony optimization of pumping schedule to minimize the energy cost using variable-speed pumps in water distribution networks. Urban Water J. 2014, 11, 335–347. [Google Scholar] [CrossRef]
- De Paola, F.; Fontana, N.; Giugni, M.; Marini, G.; Pugliese, F. An application of the Harmony-Search Multi-Objective (HSMO) optimization algorithm for the solution of pump scheduling problem. Procedia Eng. 2016, 162, 494–502. [Google Scholar] [CrossRef]
- De Paola, F.; Fontana, N.; Giugni, M.; Marini, G.; Pugliese, F. Optimal solving of the pump scheduling problem by using a Harmony Search optimization algorithm. J. Hydroinform. 2017, 19, 879–889. [Google Scholar] [CrossRef]
- Shamir, U.; Salomons, E. Optimal Real-Time Operation of Urban Water Distribution Systems Using Reduced Models. J. Water Resour. Plan. Manag. 2008, 134, 181–185. [Google Scholar] [CrossRef]
- Belotti, P.; Kirches, C.; Leyffer, S.; Linderoth, J.; Luedtke, J.; Mahajan, A. Mixed-integer nonlinear optimization. Acta Numer. 2013, 22, 1–13. [Google Scholar] [CrossRef]
- Powell, M.J.D. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 1964, 7, 155–162. [Google Scholar] [CrossRef]
- Fecarotta, O.; Carravetta, A.; Morani, M.; Padulano, R. Optimal Pump Scheduling for Urban Drainage under Variable Flow Conditions. Resources 2018, 7, 73. [Google Scholar] [CrossRef]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Michalewicz, Z. Genetic Algorithms+ Data Structures = Evolution Programs; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
Parameter | Value | p-Value |
---|---|---|
Constant | −8.87 × 10−5 | 9.45 × 10−1 |
AR(1) | 1.40 × 101 | 0.00 |
AR(2) | −4.07 × 10−1 | 3.27 × 10−61 |
MA(1) | −6.19 × 10−1 | 1.52 × 10−126 |
MA(2) | −1.52 × 10−1 | 1.35 × 10−37 |
Variance | 2.17 × 10−1 | 0.00 |
Inflow Pattern | E (kWh/day) GA-PDSM | E (kWh/day) BONMIN | E (kWh/day) CLASSIC ON/OFF | |
---|---|---|---|---|
0.25 | 1 | 574.54 | 574.06 | 1342.1 |
0.25 | 2 | 538.21 | 536.51 | 1296.6 |
0.25 | 3 | 482.69 | 482.93 | 1204.7 |
0.25 | 4 | 592.57 | 590.71 | 1370.9 |
0.25 | 5 | 554.84 | 553.45 | 1331.1 |
0.5 | 1 | 874.88 | 874.07 | 1336.6 |
0.5 | 2 | 840.1 | 838.52 | 1294.4 |
0.5 | 3 | 772.69 | 774.42 | 1199.8 |
0.5 | 4 | 893.38 | 889.88 | 1368.7 |
0.5 | 5 | 861.36 | 859.39 | 1329.8 |
0.75 | 1 | 1170.15 | 1182.6 | 1330.7 |
0.75 | 2 | 1135.94 | 1154.5 | 1289.4 |
0.75 | 3 | 1058.80 | 1082.1 | 1195.5 |
0.75 | 4 | 1193.44 | 1214.2 | 1362.4 |
0.75 | 5 | 1167.36 | 1180.4 | 1323.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cimorelli, L.; Fecarotta, O. Optimal Regulation of Variable Speed Pumps in Sewer Systems. Environ. Sci. Proc. 2020, 2, 58. https://doi.org/10.3390/environsciproc2020002058
Cimorelli L, Fecarotta O. Optimal Regulation of Variable Speed Pumps in Sewer Systems. Environmental Sciences Proceedings. 2020; 2(1):58. https://doi.org/10.3390/environsciproc2020002058
Chicago/Turabian StyleCimorelli, Luigi, and Oreste Fecarotta. 2020. "Optimal Regulation of Variable Speed Pumps in Sewer Systems" Environmental Sciences Proceedings 2, no. 1: 58. https://doi.org/10.3390/environsciproc2020002058
APA StyleCimorelli, L., & Fecarotta, O. (2020). Optimal Regulation of Variable Speed Pumps in Sewer Systems. Environmental Sciences Proceedings, 2(1), 58. https://doi.org/10.3390/environsciproc2020002058