Total and Specific THMs’ Prediction Models in Drinking Water Pipe Networks †
Abstract
:1. Introduction
2. Literature Review on DBPs Predictive Models
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tsitsifli, S.; Kanakoudis, V. Developing THMs’ predictive models in two water supply systems in Greece. Water 2020, 12, 1422. [Google Scholar] [CrossRef]
- Tsitsifli, S.; Kanakoudis, V. Disinfection impacts to drinking water safety—A review. Proceedings 2018, 2, 603. [Google Scholar] [CrossRef]
- Richardson, S.D.; Plewa, M.J.; Wagner, E.D.; Schoeny, R.; DeMarini, D.M. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutat. Res. Rev. Mutat. Res. 2007, 636, 178–242. [Google Scholar] [CrossRef] [PubMed]
- Rook, J.J. Formation of haloforms during chlorination of natural waters. Water Treat. Exam 1974, 23, 234–243. [Google Scholar]
- Bellar, T.A.; Lichtenbert, J.J.; Kroner, R.C. The occurrence of organohalides in chlorinated drinking waters. J. Am. Water Works Assoc. 1974, 66, 703–706. [Google Scholar] [CrossRef]
- Boorman, G.A.; Dellarco, V.; Dunnick, J.K.; Chapin, R.E.; Hunter, S.; Hauchman, F.; Gardner, H.; Cox, M.; Sills, R.C. Drinking water disinfection byproducts: Review and approach to toxicity evaluation. Environ. Health Perspect. 1999, 107, 207–217. [Google Scholar] [PubMed]
- Chowdhury, S.; Champagne, P.; McLellan, P.J. Models for predicting disinfection byproduct (DBP) formation in drinking waters: A chronological review. Sci. Total Environ. 2009, 407, 4189–4206. [Google Scholar] [CrossRef]
- Ye, B.; Wang, W.; Yang, L.; Wei, J.; E., X. Factors influencing disinfection by-products formation in drinking water of six cities in China. J. Hazard. Mater. 2009, 171, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, R.; Rodriguez, M.J. Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: A review. Sci. Total Environ. 2004, 321, 21–46. [Google Scholar] [CrossRef] [PubMed]
- Abokifa, A.A.; Yang, Y.J.; Lo, C.S.; Biswas, P. Investigating the role of biofilms in trihalomethane formation in water distribution systems with a multicomponent model. Water Res. 2016, 104, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, M.S.; Morgan, N.; Maier, H.R.; Dandy, G.C.; Holmes, M.; Nixon, J.B. Use of artificial neural networks for modeling chlorine residuals in water distribution systems. In Proceedings of the International Congress on Modeling and Simulation, Townsville, Australia, 14–17 July 2003; Modeling and Simulation Society of Australia and New Zealand Inc.: Townsville, Australia, 2003; Volume 2, pp. 789–794. [Google Scholar]
- Rodriguez, M.J.; West, J.R.; Powell, J.; Sérodes, J.B. Application of two approaches to model chlorine residuals in Severn Trent Water Ltd. (STW) distribution systems. Water Sci Technol. 1997, 36, 317–324. [Google Scholar] [CrossRef]
- Sérodes, J.B.; Rodriguez, M.J.; Ponton, A. Chlorcast (c): A methodology for developing decision-making tools for chlorine disinfection control. Environ. Model. Softw. 2001, 16, 53–62. [Google Scholar] [CrossRef]
- Golfinopoulos, S.K.; Nikolaou, A.D. Formation of DBPs in the drinking water of Athens, Greece: A ten-year study. Glob. Nest J. 2005, 7, 106–118. [Google Scholar]
- Golfinopoulos, S.; Arhonditsis, G. Multiple regression models: A methodology for evaluating trihalo- methane concentrations in drinking water from raw water characteristics. Chemosphere 2002, 47, 1007–1018. [Google Scholar] [CrossRef]
- Farmaki, E.G.; Samios, S.A.; Thomaidis, N.S.; Golfinopoulos, S.; Efstathiou, C.E.; Lekkas, T.D. Artificial neural networks predictive models. A case study: Carbon and bromine concentrations prediction based on chlorination time. Glob. Nest J. 2012, 14, 10–17. [Google Scholar]
- Nikolaou, A.D.; Lekkas, T.D.; Golfinopoulos, S.K. Kinetics of the formation and decomposition of chlorination by-products in surface waters. Chem. Eng. J. 2004, 100, 139–148. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 2nd ed.; PrenticeHall: Englewood Cliffs, NJ, USA, 1984. [Google Scholar]
- Draper, N.R.; Smith, H. Applied Regression Analysis; John Wiley: New York, NY, USA, 1981. [Google Scholar]
- Ott, L. An Introduction to Statistical Methods and Data Analysis, 3rd ed.; PWS-Kent Publising Company: Boston, MA, USA, 1988. [Google Scholar]
- Uyak, V.; Ozdemir, K.; Toroz, I. Multiple linear regression modeling of disinfection by-products formation in Istanbul drinking water reservoirs. Sci. Total Environ. 2007, 378, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Tsoukalas, D.; Tsitsifli, S. A Critical Evaluation of Water Safety Plans (WSPs) and HACCP Implementation in Water Utilities. Proceedings 2018, 2, 600. [Google Scholar] [CrossRef]
- Tsitsifli, S.; Tsoukalas, D. Water Safety Plans and HACCP implementation in water utilities around the world: Benefits, drawbacks and critical success factors. Environ. Sci. Pollut. Res. 2019. [Google Scholar] [CrossRef]
Parameter | N | AV | SD | MIN | MAX |
---|---|---|---|---|---|
pH | 35 | 7.9314 | 0.3306 | 7.3 | 8.9 |
Conductivity | 35 | 690.0 | 171.7 | 419.0 | 1141.0 |
Turbidity | 35 | 0.2897 | 0.3964 | 0.10 | 2.45 |
TOC | 35 | 5.01 | 9.94 | 0.31 | 39.5 |
Residual Chlorine | 35 | 0.3417 | 0.1245 | 0.16 | 0.80 |
TTHMs | 35 | 10.67 | 14.86 | 0.48 | 68.35 |
BM | 33 | 5.64 | 8.14 | 0.35 | 33.73 |
DCBM | 20 | 3.07 | 5.23 | 0.14 | 16.43 |
DBCM | 33 | 3.115 | 5.735 | 0.12 | 25.43 |
CM | 19 | 1.233 | 1.649 | 0.13 | 5.76 |
Parameter | K–S | Parameter | K–S | Parameter | K–S | Parameter | K–S |
---|---|---|---|---|---|---|---|
pH | 0.104 | Turbidity | 0.364 | DBCM | 0.372 | (DCBM)−0.6 | 0.179 |
Conductivity | 0.150 | TTHMs | 0.249 | CM | 0.330 | logDBCM | 0.133 |
TOC | 0.442 | BM | 0.258 | logTTHMs | 0.134 | logCM | 0.130 |
Residual Chlorine | 0.178 | DCBM | 0.344 | logBM | 0.153 | logturbidity | 0.151 |
(TOC)−2 | 0.160 |
Parameter | TTHMs | pH | Cond. | TOC | Res. Chlor. | Turb. | BM | DCBM | DBCM |
---|---|---|---|---|---|---|---|---|---|
pH | 0.497 | ||||||||
Cond. | −0.446 | −0.397 | |||||||
TOC | 0.587 | 0.171 | −0.338 | ||||||
Res. Chlor. | 0.05 | 0.216 | 0.044 | 0.106 | |||||
Turb. | 0.249 | −0.032 | −0.023 | 0.570 | −0.031 | ||||
BM | 0.958 | 0.580 | −0.380 | 0.622 | 0.024 | 0.204 | |||
DCBM | 0.566 | −0.169 | −0.416 | 0.857 | 0.023 | 0.229 | 0.759 | ||
DBCM | 0.921 | 0.546 | −0.456 | 0.349 | −0.018 | 0.212 | 0.852 | 0.284 | |
CM | 0.906 | −0.075 | −0.327 | 0.968 | 0.120 | 0.200 | −0.010 | 0.979 | 0.573 |
Term | Coef | t-Value | p-Value | Term | Coef | t-Value | p-Value | Term | Coef | t-Value | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|
logTTHMs model | logBM model | DCBM−0.6 model | |||||||||
Constant | −4.42 | −2.42 | 0.022 | Constant | −6.54 | −3.29 | 0.003 | Constant | 1.42 | 0.32 | 0.754 |
pH | 0.702 | 3.26 | 0.003 | pH | 0.913 | 3.88 | 0.001 | pH | −0.171 | −0.33 | 0.750 |
Conductivity | 0.000281 | 0.67 | 0.507 | Conductivity | 0.000772 | 1.80 | 0.084 | Conductivity | 0.00132 | 0.96 | 0.353 |
TOC−2 | −0.1026 | −4.21 | 0.000 | TOC−2 | −0.0725 | −2.60 | 0.015 | TOC−2 | 0.2085 | 2.98 | 0.010 |
Res. Chl. | −0.212 | −0.41 | 0.688 | Res. Chl. | −0.429 | −0.91 | 0.370 | Res. Chl. | −2.12 | −0.89 | 0.390 |
logTurbidity | 0.152 | 0.57 | 0.576 | logTurbidity | 0.496 | 1.76 | 0.090 | logTurbidity | −0.971 | −1.46 | 0.167 |
logDBCM model | logCM model | ||||||||||
Constant | −6.48 | −3.27 | 0.003 | Constant | 0.11 | 0.04 | 0.968 | ||||
pH | 0.884 | 3.74 | 0.001 | pH | 0.182 | 0.57 | 0.580 | ||||
Conductivity | 0.00035 | 0.75 | 0.462 | Conductivity | −0.00152 | −1.69 | 0.115 | ||||
TOC−2 | −0.1112 | −4.03 | 0.000 | TOC−2 | −0.08 | −2.37 | 0.034 | ||||
Res. Chl. | −0.240 | −0.40 | 0.692 | Res. Chl. | 0.039 | 0.06 | 0.955 | ||||
logTurbidity | 0.296 | 1.02 | 0.318 | logTurbidity | 0.338 | 0.53 | 0.602 |
Term | Coef | t-Value | p-Value | Model | R2 | Durbin Watson |
---|---|---|---|---|---|---|
Constant | −3.84 | −2.51 | 0.018 | logTTHMs = −3.84 + 0.633 pH − 0.1056 TOC−2 | 61.61% | 1.70419 |
pH | 0.633 | 3.34 | 0.002 | |||
(TOC)−2 | −0.1056 | −5.30 | 0.000 | |||
Constant | −4.55 | −2.49 | 0.019 | logBM = −4.55 + 0.679 pH − 0.0923 TOC−2 | 53.64% | 1.38332 |
pH | 0.679 | 3.03 | 0.005 | |||
(TOC)−2 | −0.0923 | −3.69 | 0.001 | |||
Constant | 0.619 | 2.49 | 0.023 | DCBM−0.6 = 0.619 + 0.2749 TOC−2 | 64.27% | 2.34693 |
(TOC)−2 | 0.2749 | 5.69 | 0.000 | |||
Constant | −5.89 | −3.42 | 0.002 | logDBCM = −5.89 + 0.809 pH − 0.118 TOC−2 | 65.95% | 2.06195 |
pH | 0.809 | 3.81 | 0.001 | |||
(TOC)−2 | −0.118 | −5.17 | 0.000 | |||
Constant | 0.397 | 2.05 | 0.056 | logCM = 0.397 − 0.0974 TOC−2 | 37.62% | 2.16963 |
(TOC)−2 | −0.0974 | −3.20 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsitsifli, S.; Kanakoudis, V. Total and Specific THMs’ Prediction Models in Drinking Water Pipe Networks. Environ. Sci. Proc. 2020, 2, 55. https://doi.org/10.3390/environsciproc2020002055
Tsitsifli S, Kanakoudis V. Total and Specific THMs’ Prediction Models in Drinking Water Pipe Networks. Environmental Sciences Proceedings. 2020; 2(1):55. https://doi.org/10.3390/environsciproc2020002055
Chicago/Turabian StyleTsitsifli, Stavroula, and Vasilis Kanakoudis. 2020. "Total and Specific THMs’ Prediction Models in Drinking Water Pipe Networks" Environmental Sciences Proceedings 2, no. 1: 55. https://doi.org/10.3390/environsciproc2020002055
APA StyleTsitsifli, S., & Kanakoudis, V. (2020). Total and Specific THMs’ Prediction Models in Drinking Water Pipe Networks. Environmental Sciences Proceedings, 2(1), 55. https://doi.org/10.3390/environsciproc2020002055