Pressure Management of Water Distribution Networks Based on Minimum Ground Elevation Difference of DMAs †
Abstract
:1. Introduction
2. Methodology
- Step a.
- Selection of clustering algorithm, it is possible use several algorithms, such as graph partitioning, community detection, spectral clustering; in this work, for the sake of brevity, a multi-level recursive bisection (MLRB) algorithm [19] was applied to test the proposed procedure.
- Step b.
- Define the number of DMAs NDMA.
- Step c.
- Set the initial number of weights, nw, to assign to nodes or links equal to the number of DMAs, specifically, nw represents the variable of the weight search algorithm.
- Step d.
- Divide the nodes of network into nc classes according their elevations, with nc equal to the number of weights, nw (step c).
- Step e.
- Assign the weights wj with j = 1, …, nw to the elements of the network (nodes or links) belonging to the same class; this step simplifies the allocation of weights and reduces the number of variables, because the weight is assigned to the class and not to a network element.
- Step f.
- Modify the weights wj and divide the network in clusters using the algorithm, selected in step a, minimizing the standard deviation of the DMAs ground elevations. To this aim, a genetic optimization algorithm was implemented; the optimization variables are the wj weights and the objective function (OF) to minimize is described as follows:
- Step g.
- Repeat from step c to step f, modifying the number of weights: +1.
- Step h.
- The algorithm ends when the condition is satisfied, in other words the value of objective function of i-th iteration is lower than the value of previous iteration.
3. Case Study and Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Morrison, J.; Tooms, S.; Rogers, D. Summary for Policymakers. In Climate Change 2013—The Physical Science Basis; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, UK, 2007; pp. 1–30. [Google Scholar]
- Ainsworth, R. World Health Organization. In Safe Piped Water: Managing Microbial Water Quality in Piped Distribution Systems; Ainsworth, R., Ed.; IWA Publishing: London, UK, 2004; p. 147. ISBN 924156251X. [Google Scholar]
- Di Nardo, A.; Di Natale, M.; Santonastaso, G.F.; Venticinque, S. An Automated Tool for Smart Water Network Partitioning. Water Resour. Manag. 2013, 27, 4493–4508. [Google Scholar] [CrossRef]
- Grayman, W.M.; Murray, R.; Savic, D.A. Effects of Redesign of Water Systems for Security and Water Quality Factors. In Proceedings of the World Environmental and Water Resources Congress 2009, Kansas City, MO, USA, 17–21 May 2009; pp. 1–11. [Google Scholar]
- Ciaponi, C.; Creaco, E.; Di Nardo, A.; Di Natale, M.; Giudicianni, C.; Musmarra, D.; Santonastaso, G. Reducing Impacts of Contamination in Water Distribution Networks: A Combined Strategy Based on Network Partitioning and Installation of Water Quality Sensors. Water 2019, 11, 1315. [Google Scholar] [CrossRef]
- Ostfeld, A.; Salomons, E. Optimal Early Warning Monitoring System Layout for Water Networks Security: Inclusion of Sensors Sensitivities and Response Delays. Civ. Eng. Environ. Syst. 2005, 22, 151–169. [Google Scholar] [CrossRef]
- UK Water Industry Research Limited. A Manual of DMA Practice; UK Water Industry Research Limited: London, UK, 1999. [Google Scholar]
- Sela Perelman, L.; Allen, M.; Preis, A.; Iqbal, M.; Whittle, A.J. Automated Sub-Zoning of Water Distribution Systems. Environ. Model. Softw. 2015, 65, 1–14. [Google Scholar] [CrossRef]
- Herrera, M.; Izquierdo, J.; Pérez-García, R.; Montalvo, I. Water Supply Clusters Based on a Boosting Semi-Supervised Learning Methodology. In Proceedings of the Seventh International Conference on Engineering Computational Technology, Valencia, Spain, 14–17 September 2010; Topping, B.H.V., Adam, J.M., Pallarés, F.J., Bru, R., Eds.; Civil-Comp Press: Stirlingshire, UK, 2010. [Google Scholar]
- Di Nardo, A.; Di Natale, M.; Giudicianni, C.; Greco, R.; Santonastaso, G.F. Weighted Spectral Clustering for Water Distribution Network Partitioning. Appl. Netw. Sci. 2017, 2, 19. [Google Scholar] [CrossRef] [PubMed]
- Ciaponi, C.; Murari, E.; Todeschini, S. Modularity-Based Procedure for Partitioning Water Distribution Systems into Independent Districts. Water Resour. Manag. 2016, 30, 2021–2036. [Google Scholar] [CrossRef]
- Laucelli, D.B.; Simone, A.; Berardi, L.; Giustolisi, O. Optimal Design of District Metering Areas for the Reduction of Leakages. J. Water Resour. Plan. Manag. 2017, 143, 04017017. [Google Scholar] [CrossRef]
- Diao, K.; Zhou, Y.; Rauch, W. Automated Creation of District Metered Area Boundaries in Water Distribution Systems. J. Water Resour. Plan. Manag. 2013, 139, 184–190. [Google Scholar] [CrossRef]
- Alvisi, S. A New Procedure for Optimal Design of District Metered Areas Based on the Multilevel Balancing and Refinement Algorithm. Water Resour. Manag. 2015, 29, 4397–4409. [Google Scholar] [CrossRef]
- Santonastaso, G.F.; Di Nardo, A.; Creaco, E. Dual Topology for Partitioning of Water Distribution Networks Considering Actual Valve Locations. Urban Water J. 2019, 16, 469–479. [Google Scholar] [CrossRef]
- Gomes, R.; Sousa, J.; Muranho, J.; Marques, A.S. Different Design Criteria for District Metered Areas in Water Distribution Networks. Procedia Eng. 2015, 119, 1221–1230. [Google Scholar] [CrossRef]
- Awad, H.; Kapelan, Z.; Savić, D.A. Optimal Setting of Time-Modulated Pressure Reducing Valves in Water Distribution Networks Using Genetic Algorithms. In Proceedings of the Integrating Water Systems—10th International on Computing and Control for the Water Industry, CCWI 2009, Sheffield, UK, 1–3 September 2009. [Google Scholar]
- Brentan, B.M.; Campbell, E.; Meirelles, G.L.; Luvizotto, E.; Izquierdo, J. Social Network Community Detection for DMA Creation: Criteria Analysis through Multilevel Optimization. Math. Probl. Eng. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Karypis, G.; Kumar, V. Multilevelk-Way Partitioning Scheme for Irregular Graphs. J. Parallel Distrib. Comput. 1998, 48, 96–129. [Google Scholar] [CrossRef]
- Rossman, L.A. EPANET 2 User Manual; U.S. Environmental Protection Agency: Washington, DC, USA, 2000. [Google Scholar]
- Martinez, F.; Conejos, P.; Vercher, J. Developing an Integrated Model for Water Distribution Systems Considering Both Distributed Leakage and Pressure-Dependent Demands. In Proceedings of the 29th Annual Water Resources Planning and Management Conference, WRPMD 1999: Preparing for the 21st Century, Tempe, AZ, USA, 6–9 June 1999. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
k | Nodes | Nec | IB | zmean [m] | ∆z [m] | ||
---|---|---|---|---|---|---|---|
2DMA none | 1 | 110 | 8 | 1.01 | 277.70 | 37.72 | 8.97 |
2 | 107 | 301.18 | 58.28 | 17.22 | |||
3DMA none | 1 | 73 | 15 | 1.02 | 305.96 | 53.78 | 14.97 |
2 | 70 | 276.72 | 38.35 | 8.57 | |||
3 | 74 | 284.70 | 53.25 | 14.74 | |||
4DMA none | 1 | 54 | 20 | 1.01 | 278.06 | 32.72 | 9.01 |
2 | 54 | 276.65 | 33.79 | 8.25 | |||
3 | 54 | 312.87 | 31.28 | 7.93 | |||
4 | 55 | 289.54 | 57.00 | 15.71 | |||
5DMA none | 1 | 43 | 26 | 1.01 | 315.05 | 32.72 | 7.93 |
2 | 44 | 298.00 | 33.79 | 13.48 | |||
3 | 42 | 275.32 | 31.28 | 9.12 | |||
4 | 44 | 277.04 | 57.00 | 7.40 | |||
5 | 44 | 280.95 | 32.72 | 9.73 |
k | Nodes | Nec | IB | zmean [m] | ∆z [m] | ||
---|---|---|---|---|---|---|---|
2DMA weighted | 1 | 74 | 9 | 1.32 | 311.25 | 33.46 | 8.77 |
2 | 143 | 277.91 | 37.72 | 8.60 | |||
3DMA weighted | 1 | 67 | 17 | 1.11 | 312.65 | 36.29 | 8.03 |
2 | 80 | 272.05 | 19.52 | 3.59 | |||
3 | 70 | 286.60 | 28.22 | 7.84 | |||
4DMA weighted | 1 | 63 | 22 | 1.59 | 313.17 | 31.28 | 7.88 |
2 | 34 | 292.16 | 30.91 | 8.10 | |||
3 | 86 | 272.38 | 18.11 | 3.73 | |||
4 | 34 | 284.88 | 27.72 | 7.04 | |||
5DMA weighted | 1 | 31 | 30 | 1.41 | 318.14 | 28.28 | 6.65 |
2 | 34 | 308.21 | 23.67 | 5.57 | |||
3 | 43 | 273.04 | 26.99 | 5.29 | |||
4 | 61 | 288.82 | 30.87 | 7.49 | |||
5 | 48 | 272.37 | 12.03 | 2.63 |
nfm [-] | nprv [-] | Leakage [%] | ||
---|---|---|---|---|
Original Network | - | - | 43.02 | |
2DMA | None | 2 | 3 | 39.08 |
weighted | 1 | 2 | 38.10 | |
3DMA | None | 4 | 5 | 40.45 |
weighted | 2 | 3 | 34.95 | |
4DMA | None | 5 | 6 | 38.46 |
weighted | 4 | 5 | 33.49 | |
5DMA | None | 5 | 6 | 37.03 |
weighted | 4 | 5 | 35.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santonastaso, G.F.; Nardo, A.D.; Di Natale, M.; Tzatchkov, V. Pressure Management of Water Distribution Networks Based on Minimum Ground Elevation Difference of DMAs. Environ. Sci. Proc. 2020, 2, 47. https://doi.org/10.3390/environsciproc2020002047
Santonastaso GF, Nardo AD, Di Natale M, Tzatchkov V. Pressure Management of Water Distribution Networks Based on Minimum Ground Elevation Difference of DMAs. Environmental Sciences Proceedings. 2020; 2(1):47. https://doi.org/10.3390/environsciproc2020002047
Chicago/Turabian StyleSantonastaso, Giovanni Francesco, Armando Di Nardo, Michele Di Natale, and Velitchko Tzatchkov. 2020. "Pressure Management of Water Distribution Networks Based on Minimum Ground Elevation Difference of DMAs" Environmental Sciences Proceedings 2, no. 1: 47. https://doi.org/10.3390/environsciproc2020002047
APA StyleSantonastaso, G. F., Nardo, A. D., Di Natale, M., & Tzatchkov, V. (2020). Pressure Management of Water Distribution Networks Based on Minimum Ground Elevation Difference of DMAs. Environmental Sciences Proceedings, 2(1), 47. https://doi.org/10.3390/environsciproc2020002047