Deep Learning-Based Surface Fuel Type Classification from Forest Stand Photographs and Sentinel-2 Time Series †
Abstract
:Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labenski, P.; Ewald, M.; Fassnacht, F.E. Deep Learning-Based Surface Fuel Type Classification from Forest Stand Photographs and Sentinel-2 Time Series. Environ. Sci. Proc. 2022, 17, 22. https://doi.org/10.3390/environsciproc2022017022
Labenski P, Ewald M, Fassnacht FE. Deep Learning-Based Surface Fuel Type Classification from Forest Stand Photographs and Sentinel-2 Time Series. Environmental Sciences Proceedings. 2022; 17(1):22. https://doi.org/10.3390/environsciproc2022017022
Chicago/Turabian StyleLabenski, Pia, Michael Ewald, and Fabian Ewald Fassnacht. 2022. "Deep Learning-Based Surface Fuel Type Classification from Forest Stand Photographs and Sentinel-2 Time Series" Environmental Sciences Proceedings 17, no. 1: 22. https://doi.org/10.3390/environsciproc2022017022
APA StyleLabenski, P., Ewald, M., & Fassnacht, F. E. (2022). Deep Learning-Based Surface Fuel Type Classification from Forest Stand Photographs and Sentinel-2 Time Series. Environmental Sciences Proceedings, 17(1), 22. https://doi.org/10.3390/environsciproc2022017022