Electromagnetic Saline Water for Potato Growth and Water Relations †
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Details
2.2. Agronomic Parameters
2.3. Plant Water Status and Proline Determination
2.4. Statistical Analysis
3. Results
3.1. Agronomic Traits
3.2. Plant Water Status
3.3. Proline Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadok, W.; Schoppach, R.; Ghanem, M.E.; Zucca, C.; Sinclair, T.R. Wheat drought-tolerance to enhance food security in Tunisia, birthplace of the Arab Spring. Eur. J. Agron. 2019, 107, 1–9. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, J.; Yang, X.; Wu, H.; Wei, Q.; Wei, H.; Zhang, H. Growth performance, organ level ionic relations and organic osmoregulation of Elaeagnus angustifolia in response to salt Stress. PLoS ONE 2018, 13, e0191552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Raad, A.; Hanafiag, M.M.; Naje, A.S.; Ajeel, M.A.; Basheer, A.O.; Aljayashi, T.A.; Toriman, M.O. Treatment of Saline Water Using Electrocoagulation with Combined Electrical Connection of Electrodes. Processes 2019, 7, 242. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, J.A.T.; Dobránszki, J. Impact of magnetic water on plant growth. Environ. Exp. Biol. 2015, 12, 137–142. [Google Scholar]
- Abedinpour, M.; Rohani, E. Effects of magnetized water application on soil and maize growth indices under different amounts of salt in the water. J. Water Reuse Desalin. 2017, 7, 319–325. [Google Scholar] [CrossRef] [Green Version]
- Hilal, M.; Hilal, M. Application of magnetic technologies in desert agriculture. I-Seed germination and seedling emergence of some crops in a saline calcareous soil. Egypt. J. Soil Sci. 2000, 40, 413–422. [Google Scholar]
- Akrimi, R.; Hajlaoui, H.; Rizzo, V.; Muratore, G.; Mhamdi, M. Agronomical traits, phenolic compounds and antioxidant activity in raw and cooked potato tubers growing under saline conditions. J. Sci. Food Agric. 2020, 100, 3719–3728. [Google Scholar] [CrossRef] [PubMed]
- Zlotopolski, V. Magnetic treatment reduces water usage in irrigation without negatively impacting yield, photosynthesis and nutrient uptake in lettuce. Int. J. Appl. Agric. Sci. 2017, 3, 117–122. [Google Scholar] [CrossRef] [Green Version]
Treatments | PH (cm) | FW (g Plant−1) | DW (g Plant−1) | Yield (g Plant−1) | |
---|---|---|---|---|---|
Spunta | T1 (2.2 ms cm−1) | 17.12 ± 0.95 a | 868.36 ± 51 a | 135.03 ± 11 a | 1205.88 ± 41.86 a |
T2 (8.5 ms cm−1) | 12.25 ± 1.34 b | 772.36 ± 32 b | 113.53 ± 8 b | 918.72 ± 60.38 c | |
T3 (8.5 ms cm−1) | 16.50 ± 1.22 a | 733.00 ± 40 b | 131.16 ± 12 a | 1016.97 ± 69.82 b | |
Bellini | T1 (2.2 ms cm−1) | 18.75 ± 1.44 a | 757.63 ± 51 a | 141.2 ± 11 a | 1088.00 ± 76.01 a |
T2 (8.5 ms cm−1) | 9.52 ± 0.33 b | 556.43 ± 32 b | 100.13 ± 8 b | 656.52 ± 75.41 c | |
T3 (8.5 ms cm−1) | 9.37 ± 1.18 b | 482.30 ± 40 c | 92.46 ± 12 b | 865.50 ± 67.08 b | |
Alaska | T1 (2.2 ms cm−1) | 22.50 ± 0.62 a | 1136.13 ± 51 a | 187.3 ± 11 a | 1592.78 ± 92.62 a |
T2 (8.5 ms cm−1) | 12.25 ± 0.72 c | 675.66 ± 32 c | 110.3 ± 8 c | 914.24 ± 40.73 c | |
T3 (8.5 ms cm−1) | 17.37 ± 1.68 b | 740.47 ± 40 b | 144.16 ± 12 b | 1380.08 ± 67.17 b | |
ANOVA | T | 18.25 ** | 6.77 ** | 2.9 * | 14.69 ** |
V | 52.25 ** | 1.7 ns | 0.76 ns | 29.36 ** | |
T × V | 6.07 ** | 1.47 ns | 0.54 ns | 3.26 * |
Treatments | RWC (%) | Ψw (Bar) | PWUE | |
---|---|---|---|---|
Spunta | T1 (2.2 ms cm−1) | 88.37 ± 11.79 a | −1.37 ± 0.20 a | 4.74 ± 0.20 a |
T2 (8.5 ms cm−1) | 71.92 ± 5.54 b | −3.5 ± 0.40 c | 4.29 ± 0.32 c | |
T3 (8.5 ms cm−1) | 88.20 ± 11.60 a | −2.15 ± 0.50 b | 4.43 ± 0.36 b | |
Bellini | T1 (2.2 ms cm−1) | 84.24 ± 22.04 a | −1.65 ± 0.14 a | 4.43 ± 0.08 a |
T2 (8.5 ms cm−1) | 71.83 ± 10.18 c | −3.25 ± 0.50 b | 4.11 ± 0.31 b | |
T3 (8.5 ms cm−1) | 81.63 ± 23.01 b | −3.5 ± 0.65 b | 4.05 ± 0.35 b | |
Alaska | T1 (2.2 ms cm−1) | 84.82 ± 5.44 a | −2.25 ± 0.72 a | 5.01 ± 0.34 a |
T2 (8.5 ms cm−1) | 74.07 ± 4.09 c | −3 ± 0.50 b | 4.17 ± 0.64 c | |
T3 (8.5 ms cm−1) | 82.84 ± 5.37 b | −2.75 ± 0.95 a | 4.56 ± 0.58 b | |
ANOVA | T | 29.78 ** | 13.40 ** | 0.18 ns |
V | 1.74 ns | 0.68ns | 1.14 ns | |
T × V | 0.96 ns | 2.05 ns | 0.31 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akrimi, R.; Hajlaoui, H.; Denden, M.; Mhamdi, M. Electromagnetic Saline Water for Potato Growth and Water Relations. Environ. Sci. Proc. 2022, 16, 57. https://doi.org/10.3390/environsciproc2022016057
Akrimi R, Hajlaoui H, Denden M, Mhamdi M. Electromagnetic Saline Water for Potato Growth and Water Relations. Environmental Sciences Proceedings. 2022; 16(1):57. https://doi.org/10.3390/environsciproc2022016057
Chicago/Turabian StyleAkrimi, Rawaa, Hichem Hajlaoui, Mounir Denden, and Mahmoud Mhamdi. 2022. "Electromagnetic Saline Water for Potato Growth and Water Relations" Environmental Sciences Proceedings 16, no. 1: 57. https://doi.org/10.3390/environsciproc2022016057
APA StyleAkrimi, R., Hajlaoui, H., Denden, M., & Mhamdi, M. (2022). Electromagnetic Saline Water for Potato Growth and Water Relations. Environmental Sciences Proceedings, 16(1), 57. https://doi.org/10.3390/environsciproc2022016057