Desert Actinobacterial Strains Increase Salt Stress Resilience in Crops †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains of the Work
2.2. Evaluation of In Vitro Salt Tolerance
2.3. Plant Growth under Greenhouse Conditions
2.4. DNA Extraction and Identification
3. Results
3.1. Isolation and Identification of Bacterial Strains
3.2. Tolerance to Saline Stress
3.3. Plant Growth Promotion Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aragüés, R.; Medina, E.T.; Zribi, W.; Clavería, I.; Álvaro-Fuentes, J.; Faci, J. Soil salinization as a threat to the sustainability of deficit irrigation under present and expected climate change scenarios. Irrig. Sci. 2015, 33, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Molina-Menor, E.; Gimeno-Valero, H.; Pascual, J.; Peretó, J.; Porcar, M. High Culturable Bacterial Diversity From a European Desert: The Tabernas Desert. Front. Microbiol. 2021, 11, 583120. [Google Scholar] [CrossRef] [PubMed]
- Idris, H.; Goodfellow, M.; Sanderson, R.; Asenjo, J.A.; Bull, A.T. Actinobacterial Rare Biospheres and Dark Matter Revealed in Habitats of the Chilean Atacama Desert. Sci. Rep. 2017, 7, 8373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carro, L.; Castro, J.F.; Razmilic, V.; Nouioui, I.; Pan, C.; Igual, J.M.; Jaspars, M.; Goodfellow, M.; Bull, A.T.; Asenjo, J.A.; et al. Uncovering the potential of novel micromonosporae isolated from an extreme hyper-arid Atacama Desert soil. Sci. Rep. 2019, 9, 4678. [Google Scholar] [CrossRef] [PubMed]
- Kothari, V.V.; Kothari, R.K.; Kothari, C.R.; Bhatt, V.D.; Nathani, N.M.; Koringa, P.G.; Joshi, C.G.; Vyas, B.R.M. Genome Sequence of Salt-Tolerant Bacillus safensis Strain VK, Isolated from Saline Desert Area of Gujarat, India. Genome Announc. 2013, 1, e00671-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carro, L.; Nouioui, I. Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microbiol. 2017, 3, 383–412. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.M.H.; Soares, H.M.V.M.; Soares, E.V. Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Sci. Total Environ. 2019, 682, 779–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- del Carmen Orozco-Mosqueda, M.; Glick, B.R.; Santoyo, G. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiol. Res. 2020, 235, 126439. [Google Scholar] [CrossRef] [PubMed]
- Carro, L.; Razmilic, V.; Nouioui, I.; Richardson, L.; Pan, C.; Golinska, P.; Asenjo, J.A.; Bull, A.T.; Klenk, H.-P.; Goodfellow, M. Hunting for cultivable Micromonospora strains in soils of the Atacama Desert. Antonie Van Leeuwenhoek 2018, 111, 1375–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benito, P.; Carro, L.; Bacigalupe, R.; Trujillo, M.E. From roots to leaves: The colonization capacity of an endophytic filamentous actinobacteria. Phytobiomes J. 2022, 6, 35–44. [Google Scholar] [CrossRef]
- Rigaud, J.; Puppo, A. Indole-3-acetic Acid Catabolism by Soybean Bacteroids. J. Gen. Microbiol. 1975, 88, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Kearl, J.; McNary, C.; Lowman, J.S.; Mei, C.; Aanderud, Z.T.; Smith, S.T.; West, J.; Colton, E.; Hamson, M.; Nielsen, B.L. Salt-tolerant halophyte rhizosphere bacteria stimulate growth of alfalfa in salty soil. Front. Microbiol. 2019, 10, 1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parte, A.C.; Sardà Carbasse, J.; Meier-Kolthoff, J.P.; Reimer, L.C.; Göker, M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 2020, 70, 5607–5612. [Google Scholar] [CrossRef] [PubMed]
Atacama Desert Soil | Sahara Desert Nodules | Sahara Desert Roots | |
---|---|---|---|
Dermacoccus sp. | - | 3 | - |
Micromonospora sp. | 9 | 9 | - |
Micrococcus sp. | - | 1 | 13 |
Microbacterium sp. | - | 1 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez-Sastre, C.; Carro, L. Desert Actinobacterial Strains Increase Salt Stress Resilience in Crops. Environ. Sci. Proc. 2022, 16, 17. https://doi.org/10.3390/environsciproc2022016017
Alvarez-Sastre C, Carro L. Desert Actinobacterial Strains Increase Salt Stress Resilience in Crops. Environmental Sciences Proceedings. 2022; 16(1):17. https://doi.org/10.3390/environsciproc2022016017
Chicago/Turabian StyleAlvarez-Sastre, Celia, and Lorena Carro. 2022. "Desert Actinobacterial Strains Increase Salt Stress Resilience in Crops" Environmental Sciences Proceedings 16, no. 1: 17. https://doi.org/10.3390/environsciproc2022016017
APA StyleAlvarez-Sastre, C., & Carro, L. (2022). Desert Actinobacterial Strains Increase Salt Stress Resilience in Crops. Environmental Sciences Proceedings, 16(1), 17. https://doi.org/10.3390/environsciproc2022016017