Cost-Saving through Pre-Cooling: A Case Study of Sydney †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Building
2.2. Modeling
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Australian Bureau of Statistics (ABS). 4602.0.55.001—Environmental Issues: Energy Use and Conservation, Mar 2014; Australian Bureau of Statistics: Canberra, Australia, 2014. [Google Scholar]
- Australian Energy Market Operator (AEMO). Energy Efficiency Forecasts: 2019–2041; Strategy. Policy. Research. Pty Ltd.: Kingston, Australia, 2019. [Google Scholar]
- Smith, R.; Meng, K.; Dong, Z.; Simpson, R. Demand response: A strategy to address residential air-conditioning peak load in Australia. J. Mod. Power Syst. Clean Energy 2013, 1, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Wood, A.J.; Wollenberg, B.F.; Sheblé, G.B. Power Generation, Operation, and Control; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Olsthoorn, D.; Haghighat, F.; Moreau, A.; Lacroix, G. Abilities and limitations of thermal mass activation for thermal comfort, peak shifting and shaving: A review. Build. Environ. 2017, 118, 113–127. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, P.; Chen, Z.; Wang, H.; Sha, H.; Ji, Y.; Zhang, Y.; Dou, Q.; Wang, S. Experimental investigation of demand response potential of buildings: Combined passive thermal mass and active storage. Appl. Energy 2020, 280, 115956. [Google Scholar] [CrossRef]
- Braun, J.E. Load control using building thermal mass. J. Sol. Energy Eng.-Trans. ASME 2003, 125, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, S.; Xiao, F.; Gao, D. Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: A review. Energy Convers. Manag. 2013, 71, 101–114. [Google Scholar] [CrossRef]
- Turner, W.J.; Roux, J.; Walker, I.S. Reducing Residential Peak Electricity Demand with Mechanical Pre-Cooling of Building Thermal Mass; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2014. [Google Scholar]
- Arababadi, R. Operational and Technological Peak Load Shifting Strategies for Residential Buildings; Arizona State University: Tempe, AZ, USA, 2016. [Google Scholar]
- Arababadi, R.; Parrish, K. Modeling and Testing Multiple Precooling Strategies in Three Residential Building Types in the Phoenix Climate. ASHRAE Trans. 2016, 122, 202–214. [Google Scholar]
- Li, X.; Malkawi, A. Multi-objective optimization for thermal mass model predictive control in small and medium size commercial buildings under summer weather conditions. Energy 2016, 112, 1194–1206. [Google Scholar] [CrossRef]
- Wang, J.; Tang, C.Y.; Song, L. Design and analysis of optimal pre-cooling in residential buildings. Energy Build. 2020, 216, 109951. [Google Scholar] [CrossRef]
- Saberi, H.; Zhang, C.; Dong, Z.Y. Data-Driven Distributionally Robust Hierarchical Coordination for Home Energy Management. IEEE Trans. Smart Grid 2021, 12, 4090–4101. [Google Scholar] [CrossRef]
- Braun, J.E.; Montgomery, K.W.; Chaturvedi, N. Evaluating the performance of building thermal mass control strategies. HVAC R Res. 2001, 7, 403–428. [Google Scholar] [CrossRef]
- Braun, J.E.; Chaturvedi, N. An inverse gray-box model for transient building load prediction. HVAC R Res. 2002, 8, 73–99. [Google Scholar] [CrossRef]
- German, A.; Hoeschele, M.; Springer, D. Maximizing the benefits of residential pre-cooling. In ACEEE Summer Study on Energy Efficiency in Buildings; American Council for and Energy-Efficient Economy: Washington, DC, USA, 2014. [Google Scholar]
- Vishwanath, A.; Tripodi, S.; Chandan, V.; Blake, C. Enabling real-world deployment of data driven pre-cooling in smart buildings. In Proceedings of the 2018 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 19–22 February 2018; pp. 1–5. [Google Scholar]
- Vishwanath, A.; Chandan, V.; Saurav, K. An IoT-Based Data Driven Precooling Solution for Electricity Cost Savings in Commercial Buildings. IEEE Internet Things J. 2019, 6, 7337–7347. [Google Scholar] [CrossRef]
- Simon Heslop, M.R.; Yildiz, B.; Bruce, A.; Egan, R.; MacGill, I. Temporal patterns of residential air conditioning consumption in Australia’s eastern capital cities. In Proceedings of the Asia-Pacific Solar Research Conference, Canberra, Australia, 3–5 December 2019. [Google Scholar]
- CSIRO. Australian Housing Data. Available online: https://ahd.csiro.au/ (accessed on 29 November 2021).
- Bynum, M.L.; Hackebeil, G.A.; Hart, W.E.; Laird, C.D.; Nicholson, B.L.; Siirola, J.D.; Watson, J.-P.; Woodruff, D.L. Pyomo—Optimization Modeling in Python; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Baharun, A.; Ooi, K.B.; Chen, D. Thermal comfort and occupant behaviors in AccuRate, a software assessing the thermal performance of residential buildings in Australia. In Proceedings of the 5th International Workshop on Energy and Environment of Residential Buildings and the 3rd International Conference on Built Environment and Public Health, Shanghai, China, 27–29 May 2009. [Google Scholar]
- Ren, Z.; Chen, D. Modelling study of the impact of thermal comfort criteria on housing energy use in Australia. Appl. Energy 2018, 210, 152–166. [Google Scholar] [CrossRef]
- Lu, S.; Gu, W.; Ding, S.; Yao, S.; Lu, H.; Wang, D. Data-Driven aggregate thermal dynamic model for buildings: A regression approach. IEEE Trans. Smart Grid 2021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naderi, S.; Heslop, S.; Chen, D.; MacGill, I.; Pignatta, G. Cost-Saving through Pre-Cooling: A Case Study of Sydney. Environ. Sci. Proc. 2021, 12, 2. https://doi.org/10.3390/environsciproc2021012002
Naderi S, Heslop S, Chen D, MacGill I, Pignatta G. Cost-Saving through Pre-Cooling: A Case Study of Sydney. Environmental Sciences Proceedings. 2021; 12(1):2. https://doi.org/10.3390/environsciproc2021012002
Chicago/Turabian StyleNaderi, Shayan, Simon Heslop, Dong Chen, Iain MacGill, and Gloria Pignatta. 2021. "Cost-Saving through Pre-Cooling: A Case Study of Sydney" Environmental Sciences Proceedings 12, no. 1: 2. https://doi.org/10.3390/environsciproc2021012002