Assessing the Modulatory Effects of Biochar on Soil Health Status in Response to Pesticide Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Biochar Preparation
2.3. Pesticide Selection
2.4. Pesticides Application
2.5. Microbial Estimation
2.5.1. Microbial Biomass C Estimation
2.5.2. Microbial O2 Consumption Estimation
2.6. Statistics
3. Results
3.1. Biochar Effects
3.2. Insecticide Effects
3.3. Fungicide Effects
3.4. Herbicide Effects
4. Discussion
4.1. Influence of Biochar on Soil Microbial Indicators
4.2. Insecticide Effects
4.3. Fungicide Effects
4.4. Herbicide Effects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hassaan, M.A.; El Nemr, A. Pesticides Pollution: Classifications, Human Health Impact, Extraction and Treatment Techniques. Egypt. J. Aquat. Res. 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Jabbarov, Z.; Arora, N.K.; Wirth, S.; Bellingrath-Kimura, S.D. Biochar Mitigates Effects of Pesticides on Soil Biological Activities. Environ. Sustain. 2021, 4, 335–342. [Google Scholar] [CrossRef]
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide Residues in European Agricultural Soils—A Hidden Reality Unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhi, D.; Yao, B.; Zhou, Y.; Yang, Y.; Zhou, Y. Immobilization of Microbes on Biochar for Water and Soil Remediation: A Review. Environ. Res. 2022, 212, 113226. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar Application to Low Fertility Soils: A Review of Current Status, and Future Prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Ni, N.; Shi, R.; Liu, Z.; Bian, Y.; Wang, F.; Song, Y.; Jiang, X. Effects of Biochars on the Bioaccessibility of Phenanthrene/Pyrene/Zinc/Lead and Microbial Community Structure in a Soil under Aerobic and Anaerobic Conditions. J. Environ. Sci. 2018, 63, 296–306. [Google Scholar] [CrossRef]
- Lou, L.; Wu, B.; Wang, L.; Luo, L.; Xu, X.; Hou, J.; Xun, B.; Hu, B.; Chen, Y. Sorption and Ecotoxicity of Pentachlorophenol Polluted Sediment Amended with Rice-Straw Derived Biochar. Bioresour. Technol. 2011, 102, 4036–4041. [Google Scholar] [CrossRef]
- Singh, D.K. Toxicology: Agriculture and Environment Volume 1: Pesticide Chemistry and Toxicology. Univ. Delhi India 2012, 3–25. [Google Scholar]
- European Commission. Review Report for the Active Substance Thiophanate-Methyl. Finalised in the Standing Committee on the Food Chain and Animal Health at Its Meeting on 15 February 2005 in View of the Inclusion of Thiophanate-Methyl in Annex I of Directive 91/414/EEC; European Commission: Brussels, Belgium, 2005. [Google Scholar]
- European Commission. Review Report for the Active Substance Glyphosate. Finalised in the Standing Committee on Plant Health at Its Meeting on 29 June 2001 in View of the Inclusion of Glyphosate in Annex I of Directive 91/414/EEC; European Commission: Brussels, Belgium, 2002. [Google Scholar]
- Anderson, J.P.E.; Domsch, K.H. A Physiological Method for the Quantitative Measurement of Microbial Biomass in Soils. Soil Biol. Biochem. 1978, 10, 215–221. [Google Scholar] [CrossRef]
- García-Orenes, F.; Guerrero, C.; Roldán, A.; Mataix-Solera, J.; Cerdà, A.; Campoy, M.; Zornoza, R.; Bárcenas, G.; Caravaca, F. Soil Microbial Biomass and Activity under Different Agricultural Management Systems in a Semiarid Mediterranean Agroecosystem. Soil Tillage Res. 2010, 109, 110–115. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An Extraction Method for Measuring Soil Microbial Biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Hamer, U.; Marschner, B.; Brodowski, S.; Amelung, W. Interactive Priming of Black Carbon and Glucose Mineralisation. Org. Geochem. 2004, 35, 823–830. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Reckling, M.; Wirth, S. Biochar-Based Bradyrhizobium Inoculum Improves Growth of Lupin (Lupinus angustifolius L.) under Drought Stress. Eur. J. Soil Biol. 2017, 78, 38–42. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Hua, M.; Reckling, M.; Wirth, S.; Bellingrath-Kimura, S.D. Potential Effects of Biochar-Based Microbial Inoculants in Agriculture. Environ. Sustain. 2018, 1, 19–24. [Google Scholar] [CrossRef]
- Yuan, P.; Wang, J.; Pan, Y.; Shen, B.; Wu, C. Review of Biochar for the Management of Contaminated Soil: Preparation, Application and Prospect. Sci. Total Environ. 2019, 659, 473–490. [Google Scholar] [CrossRef]
- Patel, A.K.; Singhania, R.R.; Pal, A.; Chen, C.-W.; Pandey, A.; Dong, C.-D. Advances on Tailored Biochar for Bioremediation of Antibiotics, Pesticides and Polycyclic Aromatic Hydrocarbon Pollutants from Aqueous and Solid Phases. Sci. Total Environ. 2022, 817, 153054. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Lehmann, J. Black Carbon Decomposition under Varying Water Regimes. Org. Geochem. 2009, 40, 846–853. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Watts, D.W.; Laird, D.A.; Ahmedna, M.A.; Niandou, M.A.S. Short-Term CO2 Mineralization after Additions of Biochar and Switchgrass to a Typic Kandiudult. Geoderma 2010, 154, 281–288. [Google Scholar] [CrossRef]
- Kuzyakov, Y. Sources of CO2 Efflux from Soil and Review of Partitioning Methods. Soil Biol. Biochem. 2006, 38, 425–448. [Google Scholar] [CrossRef]
- Yamato, M.; Yasuyuki, O.; Irhas Fredy, W.; Saifuddin, A.; Ogawa, M. Effects of the Application of Charred Bark of Acacia Mangium on the Yield of Maize, Cowpea and Peanut, and Soil Chemical Properties in South Sumatra, Indonesia. Soil Sci. Plant Nutr. 2006, 52, 489–495. [Google Scholar] [CrossRef]
- Boehm, H.P. Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons. Carbon N. Y. 1994, 32, 759–769. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Thies, J.E.; Rillig, M.C. Biochar for Environmental Management Science and Technology. In Biochar for Environmental Management Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 85–105. [Google Scholar]
- Jin, K.L. Modern Biological Theories for Aging. Aging Dis. 2010, 1, 72–74. [Google Scholar] [PubMed]
- Pietikäinen, J.; Kiikkilä, O.; Fritze, H. Charcoal as a Habitat for Microbes and Its Effect on the Microbial Community of the Underlying Humus. Oikos 2000, 89, 231–242. [Google Scholar] [CrossRef]
- Ogawa, M.; Okimori, Y.; Takahashi, F. Carbon Sequestration by Carbonization of Biomass and Forestation: Three Case Studies. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 429–444. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Sohi, S.P.; Thies, J.E.; O’Neill, B.; Trujillo, L.; Gaunt, J.; Solomon, D.; Grossman, J.; Neves, E.G.; et al. Black Carbon Affects the Cycling of Non-Black Carbon in Soil. Org. Geochem. 2010, 41, 206–213. [Google Scholar] [CrossRef]
- Marchetti, R.; Castelli, F.; Orsi, A.; Sghedoni, L.; Bochicchio, D. Biochar from Swine Manure Solids: Influence on Carbon Sequestration and Olsen Phosphorus and Mineral Nitrogen Dynamics in Soil with and without Digestate Incorporation. Ital. J. Agron. 2012, 7, 26. [Google Scholar] [CrossRef]
- Melas, G.; Ortiz, O.; Alacañiz, J. Can Biochar Protect Labile Organic Matter against Mineralization in the Soil? Pedosphere 2017, 27, 822–831. [Google Scholar] [CrossRef]
- Khorram, M.S.; Lin, D.; Zhang, Q.; Zheng, Y.; Fang, H.; Yu, Y. Effects of Aging Process on Adsorption–Desorption and Bioavailability of Fomesafen in an Agricultural Soil Amended with Rice Hull Biochar. J. Environ. Sci. 2017, 56, 180–191. [Google Scholar] [CrossRef]
- Frioni, L. Procesos Microbianos; Fundación Universidad de Río Cuarto: Río Cuarto, Argentina, 1999; Volume II, pp. 273–274. [Google Scholar]
- Zdruli, P.; Jones, R.J.A.; Montanarella, L. Organic Matter in the Soils of Southern Europe; European Soil Bureau Technical Report; EUR 21083 EN; Office for Official Publications of the European Communities: Luxembourg, 2004; 16p. [Google Scholar]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A Review of Biochar and Its Use and Function in Soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar]
- Nag, S.K.; Kookana, R.; Smith, L.; Krull, E.; Macdonald, L.M.; Gill, G. Poor Efficacy of Herbicides in Biochar-Amended Soils as Affected by Their Chemistry and Mode of Action. Chemosphere 2011, 84, 1572–1577. [Google Scholar] [CrossRef]
- Meng, L.; Sun, T.; Li, M.; Saleem, M.; Zhang, Q.; Wang, C. Soil-Applied Biochar Increases Microbial Diversity and Wheat Plant Performance under Herbicide Fomesafen Stress. Ecotoxicol. Environ. Saf. 2019, 171, 75–83. [Google Scholar] [CrossRef]
- Hammes, K.; Schmidt, M. Changes in biochar in soil. In Biochar for Environmental Management; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 169–182. [Google Scholar]
Parameter | Units | Value |
---|---|---|
Clay (<0.002 mm) | g kg−1 | 174 |
Fine silt (0.002–0.02 mm) | g kg−1 | 125 |
Coarse silt (0.02–0.05 mm) | g kg−1 | 105 |
Sand (0.05–2 mm) | g kg−1 | 596 |
pH (H2O) 1:2.5 w:v | −−−−−− | 8.3 |
E.C. 25 °C (1:5 w:v) | dS m−1 | 0.21 |
Organic matter (dichromate oxidation) | g kg−1 | 16.0 |
CaCO3 equiv. | g kg−1 | 60.0 |
N (Kjeldahl) | g kg−1 | 0.8 |
P (Olsen) | mg kg−1 | 27.0 |
K (NH4Ac extract) | mg kg−1 | 159 |
Ca (NH4Ac extract) | mg kg−1 | 5557 |
Mg (NH4Ac extract) | mg kg−1 | 233 |
Na (NH4Ac extract) | mg kg−1 | 62 |
Cd (acid digestion) | mg kg−1 | <0.5 |
Cu (acid digestion) | mg kg−1 | 17 |
Ni (acid digestion) | mg kg−1 | 7 |
Pb (acid digestion) | mg kg−1 | 25 |
Zn (acid digestion) | mg kg−1 | 65 |
Cr (acid digestion) | mg kg−1 | 10 |
Hg (acid digestion) | μg kg−1 | <40 |
Insecticide | Fungicide | Herbicide | |
---|---|---|---|
Commercial name | Confidor, Bayer | Pelt, Bayer | Logrado, Mass |
Active principle | Active Imidacloprid principle | Thiophanate methyl | Glyphosate, Mono Isopropylamine salt solution |
Recommended dose | 0.65 L ha−1 [potatoes] (0.25 mL kg−1) | 1.7 L ha−1 [cereal] (0.65 mL kg−1) | 4.5 L ha−1 [general use] (1.73 mL kg−1) |
Provided dose | 0.38 mL kg−1 | 0.98 mL kg−1 | 2.60 mL kg−1 |
Molecular structure | C9H10ClN5O2 | C12H14N4O4S2 | C6H17N2O5P |
CAS number | 138261-41-3 | 23564-05-8 | 38641-94-0 |
Octanol:water partition coefficient (log Kow) | 0.57 | 1.4 | −3.2 |
Water solubility | 0.61 g L−1 at 20 °C | 24.6 mg L−1 at 25 °C | 12 g L−1 at 25 °C |
Reported half-life in soil | 40–124 d [8] | <60 d [9] | 2–197 d [10] |
Biochar Dose in Soil (g kg−1) | Insecticide (Confidor) (mL kg−1) | Fungicide (Pelt) (mL kg−1) | Herbicide (Logrado) (mL kg−1) | Code |
---|---|---|---|---|
0 | 0 | 0 | 0 | B0 I–F–H– |
1.9 | 0 | 0 | 0 | B1 I–F–H– |
11.5 | 0 | 0 | 0 | B2 I–F–H– |
0 | 0.38 | 0 | 0 | B0 I + F–H– |
1.9 | 0.38 | 0 | 0 | B1 I + F–H– |
1 1.5 | 0.38 | 0 | 0 | B2 I + F–H– |
0 | 0 | 0.98 | 0 | B0 I–F + H– |
1.9 | 0 | 0.98 | 0 | B1 I–F + H– |
11.5 | 0 | 0.98 | 0 | B2 I–F–H+ |
0 | 0 | 0 | 2.60 | B0 I–F–H+ |
1.9 | 0 | 0 | 2.60 | B1 I–F–H+ |
11.5 | 0 | 0 | 2.60 | B2 I–F–H+ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melas, G.B.; Ortiz, O.; Roshdy, A.M.; Hendawi, M.Y.; Triantakonstantis, D.; Shaddad, S. Assessing the Modulatory Effects of Biochar on Soil Health Status in Response to Pesticide Application. Earth 2025, 6, 27. https://doi.org/10.3390/earth6020027
Melas GB, Ortiz O, Roshdy AM, Hendawi MY, Triantakonstantis D, Shaddad S. Assessing the Modulatory Effects of Biochar on Soil Health Status in Response to Pesticide Application. Earth. 2025; 6(2):27. https://doi.org/10.3390/earth6020027
Chicago/Turabian StyleMelas, Giovanna B., Oriol Ortiz, Amira M. Roshdy, Mohamed Y. Hendawi, Dimitrios Triantakonstantis, and Sameh Shaddad. 2025. "Assessing the Modulatory Effects of Biochar on Soil Health Status in Response to Pesticide Application" Earth 6, no. 2: 27. https://doi.org/10.3390/earth6020027
APA StyleMelas, G. B., Ortiz, O., Roshdy, A. M., Hendawi, M. Y., Triantakonstantis, D., & Shaddad, S. (2025). Assessing the Modulatory Effects of Biochar on Soil Health Status in Response to Pesticide Application. Earth, 6(2), 27. https://doi.org/10.3390/earth6020027