Wastewater Management Strategies in Rural Communities Using Constructed Wetlands: The Role of Community Participation
Abstract
:1. Introduction
2. Materials and Methods
- Studies must be written in English and Spanish and peer-reviewed.
- The included studies are within the search range from 2004 to December 2024.
- One of the previously mentioned keywords must be included in the search, as well as including community participation concepts in the development and conservation of constructed wetlands.
3. Results and Discussion
3.1. The Importance of Community Participation in Environmental Management and Water Resource Conservation
3.2. Participatory Strategies for Wastewater Sanitation in Rural Communities
3.3. Constructed Wetlands: Key Factors in Design and Operation in Rural Areas
3.3.1. Hydraulic Configuration and Flow Type
3.3.2. Vegetation Selection and Its Role in Pollutant Removal
3.3.3. Filter Media Selection and Contaminant Removal Efficiency
3.3.4. Challenges to Be Addressed So as to Improve Wastewater Treatment in Rural Communities
3.4. Managing Constructed Wetlands in Rural Areas Through Community Participation
3.4.1. Success Story: Thematic Ornamental Constructed Wetland, Salvador Díaz Mirón Rural Community, Veracruz, Mexico
Community Assessment and Awareness
Collaborative Planning and Design
Joint Construction and Implementation
Operation, Maintenance, and Participatory Monitoring
Dissemination and Social Appropriation
3.5. Future Prospects and Challenges for Community Participation in Decentralized Treatment Management
3.5.1. Technical, Economic, and Social Challenges
3.5.2. Emerging Innovations and Technologies
3.5.3. Governance Models and Public Policies
3.5.4. Sustainability and Resilience
3.5.5. Education and Awareness
4. Conclusions
- Community participation is an important tool in constructed wetlands management. In the planning phase, 94.26% of residents were found to participate in the site selection and beneficiary selection. However, in the construction phase, participation drops to 32.79%, highlighting the need for training and technical support.
- Rural communities face structural barriers. Lack of funding, limited technical advice, and the absence of regulations hinder the implementation and sustainability of these systems.
- Long-term sustainability depends on community ownership. Of the total number of residents, 92.62% are responsible for maintenance, and 81.97% manage operating funds. Without stable funding, systems can deteriorate or be abandoned.
- Low participation compromises system functionality. A lack of ongoing involvement can lead to infrastructure deterioration, reducing its treatment capacity and ecosystem benefits.
- Environmental education and community monitoring are essential. Awareness increases social ownership and improves operational efficiency. Technology facilitates participatory monitoring, ensuring long-term sustainability.
- Funding must cover the entire system life cycle. It should not be limited to installation but should be guaranteed for maintenance, monitoring, and rehabilitation. It is key to establish regulations that facilitate approval and ensure that institutions are more accessible and flexible in their support processes.
- Collaborative governance is essential. The triple helix model (academia, government, and society) distributes responsibilities equitably, promoting community resilience and constructed wetlands sustainability.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matovelle, C.; Quinteros, M.; Ochoa-García, S.A. Performance of Equisetum spp. and Zantedeschia aethiopica on the Evaluation of Artificial Wetlands as an Alternative for Wastewater Treatment in Rural Areas of the Ecuadorian Andes. Curr. Res. Environ. Sustain. 2024, 7, 100243. [Google Scholar] [CrossRef]
- Pham Thi, N.; Kappas, M.; Faust, H. Impacts of Agricultural Land Acquisition for Urbanization on Agricultural Activities of Affected Households: A Case Study in Huong Thuy Town, Thua Thien Hue Province, Vietnam. Sustainability 2021, 13, 8559. [Google Scholar] [CrossRef]
- CONAGUA. Estadísticas del Agua en México. 2021. Available online: https://files.conagua.gob.mx/conagua/publicaciones/Publicaciones/EAM%202021.pdf (accessed on 27 April 2024).
- Moreira, F.D.; Dias, E.H.O. Constructed Wetlands Applied in Rural Sanitation: A Review. Environ. Res. 2020, 190, 110016. [Google Scholar] [CrossRef]
- Elfanssi, S.; Ouazzani, N.; Latrach, L.; Hejjaj, A.; Mandi, L. Phytoremediation of Domestic Wastewater Using a Hybrid Constructed Wetland in Mountainous Rural Area. Int. J. Phytoremediat. 2018, 20, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Calheiros, C.S.C.; Bessa, V.S.; Mesquita, R.B.R.; Brix, H.; Rangel, A.O.S.S.; Castro, P.M.L. Constructed Wetland with a Polyculture of Ornamental Plants for Wastewater Treatment at a Rural Tourism Facility. Ecol. Eng. 2015, 79, 1–7. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Tang, C.; Xu, L.; Morgan, D.; Liu, R. Role of Macrophyte Species in Constructed Wetland-Microbial Fuel Cell for Simultaneous Wastewater Treatment and Bioenergy Generation. Chem. Eng. J. 2020, 392, 123708. [Google Scholar] [CrossRef]
- Geetha Varma, V.; Jha, S.; Himesh Karthik Raju, L.; Lalith Kishore, R.; Ranjith, V. A Review on Decentralized Wastewater Treatment Systems in India. Chemosphere 2022, 300, 134462. [Google Scholar] [CrossRef]
- Fu, X.; Wu, X.; Zhou, S.; Chen, Y.; Chen, M.; Chen, R. A Constructed Wetland System for Rural Household Sewage Treatment in Subtropical Regions. Water 2018, 10, 716. [Google Scholar] [CrossRef]
- Kushwaha, A.; Goswami, L.; Kim, B.S.; Lee, S.S.; Pandey, S.K.; Kim, K.-H. Constructed Wetlands for the Removal of Organic Micropollutants from Wastewater: Current Status, Progress, and Challenges. Chemosphere 2024, 360, 142364. [Google Scholar] [CrossRef]
- Wang, L.; Ma, L.; Wang, J.; Zhao, X.; Jing, Y.; Liu, C.; Xiao, Y.; Li, C.; Jiao, C.; Xu, M. Research Progress on the Removal of Contaminants from Wastewater by Constructed Wetland Substrate: A Review. Water 2024, 16, 1848. [Google Scholar] [CrossRef]
- Rodriguez-Dominguez, M.A.; Konnerup, D.; Brix, H.; Arias, C.A. Constructed Wetlands in Latin America and the Caribbean: A Review of Experiences during the Last Decade. Water 2020, 12, 1744. [Google Scholar] [CrossRef]
- Wibowo, B.A.; Aditomo, A.B.; Prihantoko, K.E. Community Participation of Coastal Area on Management of National Park, Karimunjawa Island. IOP Conf. Ser. Earth Environ. Sci. 2018, 116, 012051. [Google Scholar] [CrossRef]
- Talò, C.; Mannarini, T.; Rochira, A. Sense of Community and Community Participation: A Meta-Analytic Review. Soc. Indic. Res. 2014, 117, 1–28. [Google Scholar] [CrossRef]
- Aldegheishem, A. Community Participation in Urban Planning Process in Saudi Arabia: An Empirical Assessment. J. Urban Manag. 2023, 12, 221–230. [Google Scholar] [CrossRef]
- Tyhotyholo, T.; Ncube, B. The Rhetoric of Community Participation in Urban South African Water Governance. Util. Policy 2023, 82, 101573. [Google Scholar] [CrossRef]
- Harvey, C.A.; Rambeloson, A.M.; Andrianjohaninarivo, T.; Andriamaro, L.; Rasolohery, A.; Randrianarisoa, J.; Ramanahadray, S.; Christie, M.; Siwicka, E.; Remoundou, K.; et al. Local Perceptions of the Livelihood and Conservation Benefits of Small-Scale Livelihood Projects in Rural Madagascar. Soc. Nat. Resour. 2018, 31, 1045–1063. [Google Scholar] [CrossRef]
- Suwandhahannadi, W.K.; Le De, L.; Wickramasinghe, D.; Dahanayaka, D.D.G.L. Community Participation for Assessing and Managing Ecosystem Services of Coastal Lagoons: A Case of the Rekawa Lagoon in Sri Lanka. Ocean Coast. Manag. 2024, 251, 107069. [Google Scholar] [CrossRef]
- Degnet, M.B.; van der Werf, E.; Ingram, V.; Wesseler, J. Community Perceptions: A Comparative Analysis of Community Participation in Forest Management: FSC-Certified and Non-Certified Plantations in Mozambique. For. Policy Econ. 2022, 143, 102815. [Google Scholar] [CrossRef]
- Kimengsi, J.N.; Deodatus Ngu, N. Community Participation and Forest Management Dynamics in Rural Cameroon. World Dev. Perspect. 2022, 27, 100442. [Google Scholar] [CrossRef]
- O’Faircheallaigh, C. Public Participation and Environmental Impact Assessment: Purposes, Implications, and Lessons for Public Policy Making. Environ. Impact Assess. Rev. 2010, 30, 19–27. [Google Scholar] [CrossRef]
- Ikhlas, N.; Ramadan, B.S. Community-Based Watershed Management (CBWM) for Climate Change Adaptation and Mitigation: Research Trends, Gaps, and Factors Assessment. J. Clean. Prod. 2024, 434, 140031. [Google Scholar] [CrossRef]
- Nare, L.; Odiyo, J.O.; Francis, J.; Potgieter, N. Framework for Effective Community Participation in Water Quality Management in Luvuvhu Catchment of South Africa. Phys. Chem. Earth 2011, 36, 1063–1070. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Cao, R.; Zheng, C.; Guo, Y.; Gong, W.; Wei, Z. How Important is Community Participation to Eco-Environmental Conservation in Protected Areas? From the Perspective of Predicting Locals’ Pro-Environmental Behaviours. Sci. Total Environ. 2020, 739, 139889. [Google Scholar] [CrossRef]
- Purnawanti, E.; Oktavitri, N.I.; Isnadina, D.R.M.; Fitriani, N. Evaluation of Communal Wastewater Treatment Plant Based on Technical, Institutional, and Community Participation Aspects in South Surabaya. IOP Conf. Ser. Earth Environ. Sci. 2019, 259, 012016. [Google Scholar] [CrossRef]
- Meidiana, C.; Sekito, T.; Sasongko, W. Determining Factors of Community Participation in Waste Bank. IOP Conf. Ser. Earth Environ. Sci. 2021, 940, 012085. [Google Scholar] [CrossRef]
- Ding, C.; Li, C.; Zhu, J.; Wang, Z.; Dong, W. Public Participation in Rural Domestic Sewage Treatment: A Study from Inner Mongolia of China. Desalination Water Treat. 2021, 228, 72–83. [Google Scholar] [CrossRef]
- Zhao, H.; Ge, Y.; Zhang, J. Evaluation on the Implementation Effect of Public Participation in the Decision-Making of NIMBY Facilities. PLoS ONE 2022, 17, e0263842. [Google Scholar] [CrossRef]
- Mketo, A.R.; Ringo, C.J.; Nuhu, S.; Mpambije, C.J. Enhancing Community Participation for Environmental Health Improvement in Rural Tanzania: Evidence from Bukombe District. Eval. Program Plan. 2022, 94, 102152. [Google Scholar] [CrossRef]
- Sánchez, C.; Cummings, A.R.; Molina, C.; García, M. Caracterización de los Espacios Rurales en El Salvador a Partir de Estadísticas Nacionales. Investig. UCA 2020, 24, 208–212. [Google Scholar] [CrossRef]
- Daniel, D.; Al Djono, T.P.; Iswarani, W.P. Factors Related to the Functionality of Community-Based Rural Water Supply and Sanitation Program in Indonesia. Geogr. Sustain. 2023, 4, 29–38. [Google Scholar] [CrossRef]
- Narayanan, N.C.; Ray, I.; Gopakumar, G.; Argade, P. Towards Sustainable Urban Sanitation: A Capacity-Building Approach to Wastewater Mapping for Small Towns in India. J. Water Sanit. Hyg. Dev. 2018, 8, 227–237. [Google Scholar] [CrossRef]
- Tiberghien, J.E.; Robbins, P.T.; Tyrrel, S.F. Reflexive Assessment of Practical and Holistic Sanitation Development Tools Using the Rural and Peri-Urban Case of Mexico. J. Environ. Manag. 2011, 92, 457–471. [Google Scholar] [CrossRef]
- Quispe Fernández, G.; Ayaviri Nina, D.; Maldonado Vargas, R. Participación de los Actores en el Desarrollo Local en Entornos Rurales. Rev. Cienc. Soc. 2018, 24, 62–82. [Google Scholar] [CrossRef]
- Fong, S.F.; Lo, M.C. Community Involvement and Sustainable Rural Tourism Development: Perspectives from the Local Communities. Eur. J. Tour. Res. 2015, 11, 125–146. [Google Scholar] [CrossRef]
- Torgerson, M.; Edwards, M.E. Demographic Determinants of Perceived Barriers to Community Involvement. Nonprofit Volunt. Sect. Q. 2013, 42, 371–390. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, J.; Wang, X.; Su, H. Exploring Ecological Strategies for the Sustainability of Rural Communities. Ecol. Indic. 2023, 152, 110356. [Google Scholar] [CrossRef]
- Lengerer, F.; Steinführer, A.; Haartsen, T. To Participate, or Not to Participate—That is the Question. (Non-)Participation of Older Residents in Rural Communities. J. Rural Stud. 2022, 91, 47–57. [Google Scholar] [CrossRef]
- Zhang, Y.; You, C.; Pundir, P.; Meijering, L. Migrants’ Community Participation and Social Integration in Urban Areas: A Scoping Review. Cities 2023, 141, 104447. [Google Scholar] [CrossRef]
- Arisukwu, O.; Igbolekwu, C.; Oye, J.; Oyeyipo, E.; Asamu, F.; Rasak, B.; Oyekola, I. Community Participation in Crime Prevention and Control in Rural Nigeria. Heliyon 2020, 6, e05015. [Google Scholar] [CrossRef] [PubMed]
- Arifin, W.; Leksono, A.S. The Role and Function Analysis of Community Related to Domestic Waste Water Treatment System in Makasar City. Int. J. Appl. Eng. Res. 2018, 13, 6197–6203. [Google Scholar]
- Dalahmeh, S.S.; Assayed, M.; Suleiman, W.T. Themes of Stakeholder Participation in Greywater Management in Rural Communities in Jordan. Desalination 2009, 243, 159–169. [Google Scholar] [CrossRef]
- Roma, E.; Jeffrey, P. Evaluation of Community Participation in the Implementation of Community-Based Sanitation Systems: A Case Study from Indonesia. Water Sci. Technol. 2010, 62, 1028–1036. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, U. Community Participation in Wetland Conservation in Nepal. J. Agric. Environ. 2013, 12, 140–147. [Google Scholar] [CrossRef]
- Hernández Alarcón, M.E. Humedales Ornamentales con Participación Comunitaria para el Saneamiento de Aguas Municipales en México. Rinderesu 2016, 1, 1–12. [Google Scholar]
- Hidayat, R.; Milanie, F.M.; Nuraini, C.; Azhari, I.; Sugiarto, A. Success Factors in Managing Wastewater Infrastructure through Community Participation (Case Study: Wastewater Infrastructure in Residential Areas of Medan Deli Subdistrict, Medan). Int. J. Papier Adv. Sci. Rev. 2023, 4, 26–44. [Google Scholar] [CrossRef]
- Madon, S.; Malecela, M.N.; Mashoto, K.; Donohue, R.; Mubyazi, G.; Michael, E. The Role of Community Participation for Sustainable Integrated Neglected Tropical Diseases and Water, Sanitation and Hygiene Intervention Programs: A Pilot Project in Tanzania. Soc. Sci. Med. 2018, 202, 28–37. [Google Scholar] [CrossRef]
- Alimoradiyan, H.; Hajinezhad, A.; Yousefi, H.; Giampietro, M. Fostering Community Participation in Sustainable Municipal Solid Waste Management at Multiple Scales in Tehran, Iran. Results Eng. 2024, 22, 102174. [Google Scholar] [CrossRef]
- Gu, T.; Xu, Q.; Song, X.; Hao, E.; Cui, P.; Xie, M. Analysis of Influencing Factors and Their Inner Mechanism of the Market Participation in the Smart Community Construction of China. Ain Shams Eng. J. 2024, 15, 102761. [Google Scholar] [CrossRef]
- Hussain, S.; Xuetong, W.; Maqbool, R.; Hussain, M.; Shahnawaz, M. The Influence of Government Support, Organizational Innovativeness and Community Participation in Renewable Energy Project Success: A Case of Pakistan. Energy 2022, 239, 122172. [Google Scholar] [CrossRef]
- Jiménez, A.; Saikia, P.; Giné, R.; Avello, P.; Leten, J.; Liss Lymer, B.; Schneider, K.; Ward, R. Unpacking Water Governance: A Framework for Practitioners. Water 2020, 12, 827. [Google Scholar] [CrossRef]
- Avellán, T.; Gremillion, P. Constructed Wetlands for Resource Recovery in Developing Countries. Renew. Sustain. Energy Rev. 2019, 99, 42–57. [Google Scholar] [CrossRef]
- Werkneh, A.A. Decentralized Constructed Wetlands for Domestic Wastewater Treatment in Developing Countries: Field-Scale Case Studies, Overall Performance and Removal Mechanisms. J. Water Process Eng. 2024, 57, 104710. [Google Scholar] [CrossRef]
- Rahman, M.E.; Bin Halmi, M.I.E.; Bin Abd Samad, M.Y.; Uddin, M.K.; Mahmud, K.; Abd Shukor, M.Y.; Sheikh Abdullah, S.R.; Shamsuzzaman, S.M. Design, Operation and Optimization of Constructed Wetland for Removal of Pollutant. Int. J. Environ. Res. Public Health 2020, 17, 8339. [Google Scholar] [CrossRef]
- García, J.; Aguirre, P.; Barragán, J.; Mujeriego, R.; Matamoros, V.; Bayona, J.M. Effect of Key Design Parameters on the Efficiency of Horizontal Subsurface Flow Constructed Wetlands. Ecol. Eng. 2005, 25, 405–418. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, X.; Wang, J.; Pei, L. Impacts of Different Media on Constructed Wetlands for Rural Household Sewage Treatment. J. Clean. Prod. 2016, 127, 325–330. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A Review on the Sustainability of Constructed Wetlands for Wastewater Treatment: Design and Operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment. Water 2010, 2, 530–549. [Google Scholar] [CrossRef]
- Taylor, P.; Sundaravadivel, M.; Vigneswaran, S. Constructed Wetlands for Wastewater Treatment. Crit. Rev. Environ. Sci. Technol. 2010, 37, 37–41. [Google Scholar]
- Dai, S.; Wang, R.; Lin, J.; Zhang, G.; Chen, Z.; Li, L.; Shi, Q. Study on Physical Clogging Process and Practical Application of Horizontal Subsurface Flow Constructed Wetland. Sci. Rep. 2025, 15, 523. [Google Scholar] [CrossRef]
- Ávila, C.; Nivala, J.; Olsson, L.; Kassa, K.; Headley, T.; Mueller, R.A.; Bayona, J.M.; García, J. Emerging Organic Contaminants in Vertical Subsurface Flow Constructed Wetlands: Influence of Media Size, Loading Frequency and Use of Active Aeration. Sci. Total Environ. 2014, 494–495, 211–217. [Google Scholar] [CrossRef]
- Greksa, A.; Ljubojević, M.; Blagojević, B. The Value of Vegetation in Nature-Based Solutions: Roles, Challenges, and Utilization in Managing Different Environmental and Climate-Related Problems. Sustainability 2024, 16, 3273. [Google Scholar] [CrossRef]
- Muerdter, C.P.; Wong, C.K.; LeFevre, G.H. Emerging Investigator Series: The Role of Vegetation in Bioretention for Stormwater Treatment in the Built Environment: Pollutant Removal, Hydrologic Function, and Ancillary Benefits. Environ. Sci. Water Res. Technol. 2018, 4, 592–612. [Google Scholar] [CrossRef]
- Alufasi, R.; Gere, J.; Chakauya, E.; Lebea, P.; Parawira, W.; Chingwaru, W. Mechanisms of Pathogen Removal by Macrophytes in Constructed Wetlands. Environ. Technol. Rev. 2017, 6, 135–144. [Google Scholar] [CrossRef]
- Vymazal, J.; Březinová, T. Accumulation of Heavy Metals in Aboveground Biomass of Phragmites australis in Horizontal Flow Constructed Wetlands for Wastewater Treatment: A Review. Chem. Eng. J. 2016, 290, 232–242. [Google Scholar] [CrossRef]
- Liu, J.; Dong, Y.; Xu, H.; Wang, D.; Xu, J. Accumulation of Cd, Pb and Zn by 19 Wetland Plant Species in Constructed Wetland. J. Hazard. Mater. 2007, 147, 947–953. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of Nutrients in Constructed Wetlands for Wastewater Treatment through Plant Harvesting—Biomass and Load Matter the Most. Ecol. Eng. 2020, 155, 105962. [Google Scholar] [CrossRef]
- García-Ávila, F.; Avilés-Añazco, A.; Cabello-Torres, R.; Guanuchi-Quito, A.; Cadme-Galabay, M.; Gutiérrez-Ortega, H.; Alvarez-Ochoa, R.; Zhindón-Arévalo, C. Application of Ornamental Plants in Constructed Wetlands for Wastewater Treatment: A Scientometric Analysis. Case Stud. Chem. Environ. Eng. 2023, 7, 100307. [Google Scholar] [CrossRef]
- Konnerup, D.; Koottatep, T.; Brix, H. Treatment of Domestic Wastewater in Tropical, Subsurface Flow Constructed Wetlands Planted with Canna and Heliconia. Ecol. Eng. 2009, 35, 248–257. [Google Scholar] [CrossRef]
- Marín-Muñiz, J.L.; Hernández, M.E.; Gallegos-Pérez, M.P.; Amaya-Tejeda, S.I. Plant Growth and Pollutant Removal from Wastewater in Domiciliary Constructed Wetland Microcosms with Monoculture and Polyculture of Tropical Ornamental Plants. Ecol. Eng. 2020, 147, 105658. [Google Scholar] [CrossRef]
- Sandoval-Herazo, L.; Alvarado-Lassman, A.; Marín-Muñiz, J.; Méndez-Contreras, J.; Zamora-Castro, S.A. Effects of the Use of Ornamental Plants and Different Substrates in the Removal of Wastewater Pollutants through Microcosms of Constructed Wetlands. Sustainability 2018, 10, 1594. [Google Scholar] [CrossRef]
- Zurita, F.; de Anda, J.; Belmont, M.A. Performance of Laboratory-Scale Wetlands Planted with Tropical Ornamental Plants to Treat Domestic Wastewater. Water Qual. Res. J. 2006, 41, 410–417. [Google Scholar] [CrossRef]
- Zamora, S.; Marín-Muñiz, J.L.; Nakase-Rodríguez, C.; Fernández-Lambert, G.; Sandoval, L. Wastewater Treatment by Constructed Wetland Eco-Technology: Influence of Mineral and Plastic Materials as Filter Media and Tropical Ornamental Plants. Water 2019, 11, 2344. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, X.; Tang, Y.; Jiang, Y.; Xie, S.; Zhang, Y.; Qin, Y. Selection and Optimization of the Substrate in Constructed Wetland: A Review. J. Water Process Eng. 2022, 49, 103140. [Google Scholar] [CrossRef]
- Zhou, X.; Liang, C.; Jia, L.; Feng, L.; Wang, R.; Wu, H. An Innovative Biochar-Amended Substrate Vertical Flow Constructed Wetland for Low C/N Wastewater Treatment: Impact of Influent Strengths. Bioresour. Technol. 2018, 247, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.A.H.; Le, T.V.; Ngo, H.H.; Guo, W.S.; Vu, N.D.; Tran, T.T.T.; Nguyen, T.H.H.; Nguyen, X.C.; Nguyen, V.H.; Pham, T.T. Hybrid Use of Coal Slag and Calcined Ferralsol as Wetland Substrate for Improving Phosphorus Removal from Wastewater. Chem. Eng. J. 2022, 428, 132124. [Google Scholar] [CrossRef]
- Han, C.; Wang, Z.; Yang, W.; Wu, Q.; Yang, H.; Xue, X. Effects of pH on Phosphorus Removal Capacities of Basic Oxygen Furnace Slag. Ecol. Eng. 2016, 89, 1–6. [Google Scholar] [CrossRef]
- Zhong, H.; Hu, N.; Wang, Q.; Chen, Y.; Huang, L. How to Select Substrate for Alleviating Clogging in the Subsurface Flow Constructed Wetland? Sci. Total Environ. 2022, 828, 154529. [Google Scholar] [CrossRef]
- Fu, G.; Zhang, J.; Chen, W.; Chen, Z. Medium Clogging and the Dynamics of Organic Matter Accumulation in Constructed Wetlands. Ecol. Eng. 2013, 60, 393–398. [Google Scholar] [CrossRef]
- Sandoval Herazo, L.C.; Alvardo-Lassman, A.; Marín-Muñiz, J.L.; Rodríguez-Miranda, J.P.; Fernández-Lambert, G. A Critical Review of Mineral Substrates Used as Filter Media in Subsurface Constructed Wetlands: Costs as a Selection Criterion. Environ. Technol. Rev. 2023, 12, 251–271. [Google Scholar] [CrossRef]
- Ilyas, H.; Masih, I. Intensification of Constructed Wetlands for Land Area Reduction: A Review. Environ. Sci. Pollut. Res. 2017, 24, 12081–12091. [Google Scholar] [CrossRef]
- Machado, A.I.; Beretta, M.; Fragoso, R.; Duarte, E. Overview of the State of the Art of Constructed Wetlands for Decentralized Wastewater Management in Brazil. J. Environ. Manag. 2017, 187, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Garfí, M.; Pedescoll, A.; Bécares, E.; Hijosa-Valsero, M.; Sidrach-Cardona, R.; García, J. Effect of Climatic Conditions, Season and Wastewater Quality on Contaminant Removal Efficiency of Two Experimental Constructed Wetlands in Different Regions of Spain. Sci. Total Environ. 2012, 437, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.R.; Hook, P.B.; Stein, O.R.; Zabinski, C.A. Seasonal Effects of 19 Plant Species on COD Removal in Subsurface Treatment Wetland Microcosms. Ecol. Eng. 2011, 37, 703–710. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, J. Improving Winter Performance of Constructed Wetlands for Wastewater Treatment in Northern China: A Review. Wetlands 2014, 34, 243–253. [Google Scholar] [CrossRef]
- Christofilopoulos, S.; Kaliakatsos, A.; Triantafyllou, K.; Gounaki, I.; Venieri, D.; Kalogerakis, N. Evaluation of a Constructed Wetland for Wastewater Treatment: Addressing Emerging Organic Contaminants and Antibiotic Resistant Bacteria. New Biotechnol. 2019, 52, 94–103. [Google Scholar] [CrossRef]
- Hassan, I.; Chowdhury, S.R.; Prihartato, P.K.; Razzak, S.A. Wastewater Treatment Using Constructed Wetland: Current Trends and Future Potential. Processes 2021, 9, 1917. [Google Scholar] [CrossRef]
- Szota, C.; Danger, A.; Poelsma, P.J.; Hatt, B.E.; James, R.B.; Rickard, A.; Burns, M.J.; Cherqui, F.; Grey, V.; Coleman, R.A.; et al. Developing Simple Indicators of Nitrogen and Phosphorus Removal in Constructed Stormwater Wetlands. Sci. Total Environ. 2024, 928, 172192. [Google Scholar] [CrossRef]
- Jing, S.-R.; Lin, Y.-F. Seasonal Effect on Ammonia Nitrogen Removal by Constructed Wetlands Treating Polluted River Water in Southern Taiwan. Environ. Pollut. 2004, 127, 291–301. [Google Scholar] [CrossRef]
- Gorgoglione, A.; Torretta, V. Sustainable Management and Successful Application of Constructed Wetlands: A Critical Review. Sustainability 2018, 10, 3910. [Google Scholar] [CrossRef]
- Turon, C.; Alemany, J.; Bou, J.; Comas, J.; Poch, M. Optimal Maintenance of Constructed Wetlands Using an Environmental Decision Support System. Water Sci. Technol. 2005, 51, 109–117. [Google Scholar] [CrossRef]
- Carty, A.; Scholz, M.; Heal, K.; Gouriveau, F.; Mustafa, A. The Universal Design, Operation and Maintenance Guidelines for Farm Constructed Wetlands (FCW) in Temperate Climates. Bioresour. Technol. 2008, 99, 6780–6792. [Google Scholar] [CrossRef]
- Aydın Temel, F.; Özyazıcı, G.; Uslu, V.R.; Ardalı, Y. Full Scale Subsurface Flow Constructed Wetlands for Domestic Wastewater Treatment: 3 Years’ Experience. Environ. Prog. Sustain. Energy 2018, 37, 1348–1360. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- McConville, J.R.; Mihelcic, J.R. Adapting Life Cycle Assessment Tools to Evaluate Sustainability of Water and Sanitation Projects in International Development. Environ. Eng. Sci. 2007, 24, 937–948. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Lu, L.; Zhu, Y.; Balzan, M.V.; Pezzoli, A.; Johnson, M.; Zhu, F.; Ruan, T.; Luo, G.; Li, G.; et al. Exploring Community Perceptions and Engagement of Nature-Based Solutions: The Case of Ningbo, a Chinese Coastal Sponge City. Nat.-Based Solut. 2023, 4, 100093. [Google Scholar] [CrossRef]
- Pedraza López, A.M. Evaluation of the Performance of Constructed Wetlands in Rural Communities: A Case Study in Veracruz, Mexico. Rev. Ing. Ambient. 2014, 32, 145–160. [Google Scholar]
- Martínez-Salazar, G.; Pérez-López, J.; Ramírez-Gómez, A. Analysis of Community Participation in the Management of Natural Wetlands in Xalapa, Mexico. Ecol. Perspect. 2019, 17, 89–104. [Google Scholar]
- Reforma. Authorities Abandon Wetland. Reforma, 10 March 2024. Available online: https://www.reforma.com/dejan-autoridades-humedal-en-el-olvido/ar2947162 (accessed on 13 March 2024).
- Ecologistas en Acción. Urgent Recovery of the Protected Lamiako Wetland. Ecol. Acción, 15 February 2024. Available online: https://www.ecologistasenaccion.org/308974/consideran-inaplazable-la-recuperacion-del-humedal-protegido-de-lamiako/ (accessed on 13 March 2024).
- Razón Pública. Abandonment of La Conejera Wetland. Razón Pública, 5 March 2024. Available online: https://razonpublica.com/abandono-del-humedal-la-conejera/ (accessed on 13 March 2024).
- Galvao, A.; Mascarenhas, C.; Marques, C.; Ferreira, J.; Ratten, V. Triple Helix and Its Evolution: A Systematic Literature Review. J. Sci. Technol. Policy Manag. 2019, 10, 812–833. [Google Scholar] [CrossRef]
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). NORMA Oficial Mexicana NOM-001-SEMARNAT-2021, Establishing the Permissible Pollutant Limits for Wastewater Discharges into National Water Bodies. Diario Oficial de la Federación. 2022. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5645374&fecha=11/03/2022#gsc.tab=0 (accessed on 13 March 2024).
- Massoud, M.A.; Tarhini, A.; Nasr, J.A. Decentralized Approaches to Wastewater Treatment and Management: Applicability in Developing Countries. J. Environ. Manag. 2009, 90, 652–659. [Google Scholar] [CrossRef]
- Geranmayeh, P.; Speks, A.; Blicharska, M.; Futter, M.; Collentine, D. Regional Targeting of Purpose-Driven Wetlands: Success or Failure? Front. Sustain. Resour. Manag. 2023, 2, 1251291. [Google Scholar] [CrossRef]
- Svensson, C. Sweden’s Financial Support System for Implementation of Wetlands in Agriculture: Key Enabling and Disabling Factors. Wetl. Ecol. Manag. 2015, 55, 101–115. [Google Scholar]
- Losada-Rodríguez, N.A.; Marín-Muñiz, J.L.; Celis-Pérez, M.C.; Zamora-Castro, S.; Ortega-Pineda, G.; Zitácuaro-Contreras, I. Legal Feasibility of Using Constructed Wetlands for Wastewater Treatment in Social Housing Units in Xalapa, Veracruz, Mexico. Renew. Energy Biomass Sustain. 2024, 6, 1–13. [Google Scholar] [CrossRef]
- Hamdy, A. Information and Communication Technologies in Smart Water Management. In Proceedings of the Sixth International Scientific Agricultural Symposium, Jahorina, Bosnia and Herzegovina, 15–18 October 2015; pp. 1530–1537. [Google Scholar]
- Capodaglio, A.G.; Callegari, A.; Cecconet, D.; Molognoni, D. Sustainability of Decentralized Wastewater Treatment Technologies. Water Pract. Technol. 2017, 12, 463–477. [Google Scholar] [CrossRef]
- Megdal, S.; Eden, S.; Shamir, E. Water Governance, Stakeholder Engagement, and Sustainable Water Resources Management. Water 2017, 9, 190. [Google Scholar] [CrossRef]
- Theesfeld, I.; Dufhues, T.; Buchenrieder, G. The Effects of Rules on Local Political Decision-Making Processes: How Can Rules Facilitate Participation? Policy Sci. 2017, 50, 675–696. [Google Scholar] [CrossRef]
- Arantes, V.; Zou, C.; Che, Y. Coping with Waste: A Government-NGO Collaborative Governance Approach in Shanghai. J. Environ. Manag. 2020, 259, 109653. [Google Scholar] [CrossRef]
- Casey, K. Radical Decentralization: Does Community-Driven Development Work? Annu. Rev. Econ. 2018, 10, 139–163. [Google Scholar] [CrossRef]
- Mankad, A.; Tapsuwan, S. Review of Socio-Economic Drivers of Community Acceptance and Adoption of Decentralized Water Systems. J. Environ. Manag. 2011, 92, 380–391. [Google Scholar] [CrossRef]
Participation Strategy | Actors | Application | Reference |
---|---|---|---|
Ecological assessment and indicator system | Local residents | Ecological development of rural communities | Zhao et al. [37] |
Sports and leisure fields, annual community events, culture, informal volunteering, and community development | Retired and non-retired residents over 60 years of age | Improving adults’ life quality | Lengerer et al. [38] |
Group meetings, storytelling, and recreational activities | Migrants | Social integration of migrants in urban areas | Zhang et al. [39] |
Community surveillance | Local residents | Crime control and prevention in rural areas | Arisukwu et al. [40] |
Infrastructure development through government support by means of financing sources | Local residents and government | Domestic wastewater treatment | Arifin & Leksono [41] |
Local stakeholder committee creation | Local residents, government, and research center | Greywater management | Dalahmeh et al. [42] |
Participatory, consultative, and collaborative approaches | Local residents | Community sanitation systems | Roma & Jeffrey [43] |
Ecotourism development and income generation | Local residents and government | Wetlands conservation | Shrestha [44] |
Marketing for ornamental plants produced in the wetland | Community women’s group | Wastewater treatment using constructed wetlands | Hernández Alarcón [45] |
Problem identification through surveys and exploration | Local residents | Wastewater treatment | Hidayat et al. [46] |
Evaluated Aspect | Long-Term Implications | Sustainability Measures | Reference |
---|---|---|---|
Land impact | Permeability reduction, affecting the structural stability of the CW | Good structural stability selections and substrate rehabilitation | Purnawanti et al. [25] |
Sediments and organic matter accumulation | Severe obstruction due to excessive sediment and organic matter accumulation | Periodic cleaning, vegetation control, and filter media regeneration | Kadlec & Wallace [94] |
Sediment movement and subsurface contamination | Contaminants released are trapped in the substrate affecting groundwater quality | Implementation of leachate pretreatment and monitoring systems | Ding et al. [27] |
Phosphorus and heavy metals release | Massive release of phosphorus and heavy metals into the water | Use of high absorption capacity materials and substrate programmed regeneration | Vymazal [65] |
Organic matter and iron residue interaction | Alteration of microbial composition and variations in nutrient bioavailability | Iron and organic matter level evaluation to avoid adverse effects on the microbiota | Zhao et al. [28] |
Changes in aquatic biodiversity | Endangered species displacement and biodiversity reduction | Ecological restoration and vegetation diversification used in wetlands | Vymazal [58] |
Anoxic conditions generation | Severe anoxic conditions that reduce system efficiency | Optimization of natural aeration and DO monitoring | McConville & Mihelcic [95] |
Community/Project | Location (Country) | Type of Wetland | Installation Year | Current State | Participation Opportunities | Identified Risk Factors | Reference |
---|---|---|---|---|---|---|---|
Pinoltepec | Veracruz, Mexico | Constructed | 2012 | In operation (high risk) | Participatory maintenance, community committee establishment, ongoing training | Dependence on external actors, low community ownership, lack of clear maintenance rules | Pedraza López [97] |
Xalapa Urban Wetlands (Molinos de San Roque, Huemac, and Los Lagos) | Xalapa, Mexico | Natural | - | In operation (high risk) | Ecological restoration, community monitoring, environmental educational workshops, possible integration of constructed wetlands to improve water quality | Fragmentation, wastewater pollution, eutrophication, high flood risk, lack of knowledge, and community ownership | Martínez-Salazar et al. [98] |
Wetland in the Second Section of Chapultepec Forest | Mexico City, Mexico | Constructed | 2023 | Abandoned | Citizen monitoring, coordination of actions among the community, academia, and government | Lack of maintenance after change in government, disarticulation of responsible actors, institutional abandonment | Reforma [99] |
Lamiako Wetland | Leioa, Spain | Natural | - | In serious deterioration (risk of disappearance) | Ecological restoration, citizen monitoring, collaboration with universities and NGOs | Fragmentation by urban development projects, biodiversity loss, associated ecosystems alteration, and lack of effective protection | Ecologistas en Acción [100] |
La Conejera Wetland | Bogota, Colombia | Natural | - | In deterioration (partial abandonment) | Participatory ecological restoration, community processes strengthening, environmental educational programs | Urban expansion, wastewater pollution, vegetation cover alteration, weakening of citizen participation, lack of effective surveillance | Razón Pública [101] |
Actor | Action/Stage | Strategy | |
---|---|---|---|
Community | Academia | Raise community awareness through environmental education mechanisms | 1. Identify priorities 2. Space creation for conversation and debate |
Group creation | 1. Identify problems 2. Participative evaluation | ||
Community action plan | 1. Selection of treatment technology 2. Identify skills | ||
Government | Implementation | 1. Responsibilities assignment 2. Financial resources contribution 3. Self-employment | |
Maintenance and monitoring | 1. Continuous surveillance plan 2. Communication networks 3. Maintenance manuals | ||
Diffussion | 1. Environmental awareness 2. Income-generating activities 3. Ecotourism |
Parameter | Unit | Influent | Effluent | Allowed Value | Accordance |
---|---|---|---|---|---|
pH | pH unit | 6.35 | 7.15 | 6–9 | Fulfills |
COD | mg/L | 375.24 ± 11.14 | 27.052 ± 5.22 | 150 | Fulfills |
NT | mg/L | 38.50 + 5.78 | 15.4 ± 2.45 | 25 | Fulfills |
TP | mg/L | 18.55 ± 1.47 | 5.92 ± 2.60 | 15 | Fulfills |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monzón-Reyes, B.L.; González-Moreno, H.R.; Month, A.E.Á.; Peralta Vega, A.J.; Ballut-Dajud, G.; Sandoval Herazo, L.C. Wastewater Management Strategies in Rural Communities Using Constructed Wetlands: The Role of Community Participation. Earth 2025, 6, 18. https://doi.org/10.3390/earth6020018
Monzón-Reyes BL, González-Moreno HR, Month AEÁ, Peralta Vega AJ, Ballut-Dajud G, Sandoval Herazo LC. Wastewater Management Strategies in Rural Communities Using Constructed Wetlands: The Role of Community Participation. Earth. 2025; 6(2):18. https://doi.org/10.3390/earth6020018
Chicago/Turabian StyleMonzón-Reyes, Brenda Lizeth, Humberto Raymundo González-Moreno, Alex Elías Álvarez Month, Alexi Jose Peralta Vega, Gaston Ballut-Dajud, and Luis Carlos Sandoval Herazo. 2025. "Wastewater Management Strategies in Rural Communities Using Constructed Wetlands: The Role of Community Participation" Earth 6, no. 2: 18. https://doi.org/10.3390/earth6020018
APA StyleMonzón-Reyes, B. L., González-Moreno, H. R., Month, A. E. Á., Peralta Vega, A. J., Ballut-Dajud, G., & Sandoval Herazo, L. C. (2025). Wastewater Management Strategies in Rural Communities Using Constructed Wetlands: The Role of Community Participation. Earth, 6(2), 18. https://doi.org/10.3390/earth6020018