Assessing the Impacts of Land Use and Climate Changes on River Discharge towards Lake Victoria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Site
2.2. Data Preparation
2.3. SWAT Model Setup, Sensitivity Analysis, Calibration and Validation
2.4. Calibration and Validation of Future Climate Data
2.5. Simulating the Impacts of Land Use and Climate Change on Stream Discharge
3. Results
3.1. Sensitivity Analysis, Model Calibration and Validation
3.2. Impacts of the Current Land Use and Climate Change on the River Discharge
3.3. Future Climate Changes under RCPs 4.5, 6.0 and 8.5
3.3.1. Projected Future Temperature and Precipitation Changes
3.3.2. Projected Future Annual and Seasonal River Discharge
4. Discussion
4.1. Sensitivity Analysis, Model Calibration and Validation
4.2. Projected Future Climatological Change Variables under RCPs 4.5, 6.0 and 8.5
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miao, C.; Ni, J.; Borthwick, A.G.; Yang, L. A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the Yellow River. Glob. Planet. Chang. 2011, 76, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Yang, D.; Yang, H.; Lei, H. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin. J. Hydrol. 2014, 510, 530–540. [Google Scholar] [CrossRef]
- Choi, W.; Nauth, K.; Choi, J.; Becker, S. Urbanization and rainfall–runoff relationships in the Milwaukee River basin. Prof. Geog. 2016, 68, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Jonoski, A.; Popescu, I.; Zhe, S.; Mu, Y.; He, Y. Analysis of Flood Storage Area Operations in Huai River Using 1D and 2D River Simulation Models Coupled with Global Optimization Algorithms. Geosciences 2019, 9, 509. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Zhou, D.; Fang, J. Satellite-based Studies on large-scale vegetation changes in China. J. Integr. Plant Biol. 2012, 54, 713–728. [Google Scholar] [CrossRef] [PubMed]
- McCartney, M.P.; Rebelo, L.M.; Senaratna, S.S.; de Silva, S. Wetlands, Agriculture and Poverty Reduction; Research Report 137; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2010; p. 39. [Google Scholar]
- Adam, E.M.; Mutanga, O.; Rugege, D.; Ismail, R. Discriminating the papyrus vegetation (Cyperus papyrus L.) and its co-existent species using random forest and hyperspectral data resampled to HYMAP. Int. J. Remote Sens. 2012, 33, 552–569. [Google Scholar] [CrossRef]
- Wood, A.; Dixon, A.; McCartney, M.P. People-Centred Wetland Management. In Wetland Management and Sustainable Livelihoods in Africa; Wood, A., Dixon, A., McCartney, M.P., Eds.; Routledge: New York, NY, USA, 2013; pp. 1–42. [Google Scholar]
- Meli, P.; Benayas, J.M.R.; Balvanera, P.; Ramos, M.M. Restoration enhances wetland biodiversity and ecosystem service supply, but results are context-dependent: A meta-analysis. PLoS ONE 2014, 9, e9350. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.B.; Frail-Gauthier, J.; Mudie, P.J. Coastal Wetlands of the World: Geology, Ecology, Distribution and Applications; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Sieben, E.J.J.; Nyambeni, T.; Mtshali, H.; Corry, F.T.J.; Venter, C.E.; MacKenzie, D.R.; Matela, T.E.; Pretorius, L.; Kotze, D.C. The herbaceous vegetation of subtropical freshwater wetlands in South Africa: Classification, description and explanatory environmental factors. S. Afr. J. Bot. 2016, 104, 158–166. [Google Scholar] [CrossRef]
- Fischer, S.; Pluntke, T.; Pavlik, D.; Bernhofer, C. Hydrologic effects of climate change in a sub-basin of the Western Bug River, Western Ukraine. Environ. Earth Sci. 2014, 72, 4727–4744. [Google Scholar] [CrossRef]
- Pettorelli, N.; Nagendra, H.; Rocchini, D.; Rowcliffe, M.; Williams, R.; Ahumada, J.; Agelo, C.D.; Atzberger, C.; Boyd, D.; Buchanan, G. Remote sensing in ecology and conservation: Three years on. Remote Sens. Ecol. Conserv. 2017, 3, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Thamaga, K.H.; Dube, T.; Shoko, C. Advances in satellite remote sensing of the wetland ecosystems in Sub-Saharan Africa Advances in satellite remote sensing of the wetland. Geocarto Int. 2021, 37, 5891–5913. [Google Scholar] [CrossRef]
- Orusa, T.; Viani, A.; Cammareri, D.; Borgogno Mondino, E. A Google Earth Engine Algorithm to Map Phenological Metrics in Mountain Areas Worldwide with Landsat Collection and Sentinel-2. Geomatics 2023, 3, 221–238. [Google Scholar] [CrossRef]
- Chiloane, C.; Dube, T.; Shoko, C. Multispectral remote sensing of potential groundwater dependent vegetation in the greater Floristic region of the Western Cape, South Africa. S. Afr. Geogr. J. 2023, 1–19. [Google Scholar] [CrossRef]
- Hosseini, M.; Amin, M.; Tabatabaei, M. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar]
- Arnold, J.; Kiniry, J.; Srinivasan, R.; Williams, J.; Haney, E.; Neitsch, S. SWAT Input/Output Documentation Version 2012; Texas Water Resources Institute: College Station, TX, USA, 2012; pp. 1–65.
- Wynants, M.; Solomon, H.; Ndakidemi, P.; Blake, W.H. Pinpointing areas of increased soil erosion risk following land cover change in the Lake Manyara catchment, Tanzania. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 1–8. [Google Scholar] [CrossRef]
- Amasi, A.I.M.; Wynants, M.; Kawalla, R.A.; Sawe, S.; Munishi, L.; Blake, W.H.; Mtei, K.M. Reconstructing the Changes in Sedimentation and Source Provenance in an East African Hydropower Reservoirs: A Case Study of Nyumba ya Mungu in Tanzania. Earth 2021, 2, 485–514. [Google Scholar] [CrossRef]
- Wynants, M.; Kelly, C.; Mtei, K.; Munishi, L.; Patrick, A.; Rabinovich, A.; Nasseri, M.; Gilvear, D.; Roberts, N.; Boeckx, P.; et al. Drivers of increased soil erosion in East Africa’s agro-pastoral systems: Changing interactions between the social, economic and natural domains. Reg. Environ. Chang. 2019, 19, 1909–1921. [Google Scholar] [CrossRef] [Green Version]
- Amasi, A.I.M.; Wynants, M.; Blake, W.; Mtei, K. Drivers, Impacts and Mitigation of Increased Sedimentation in the Hydropower Reservoirs of East Africa. Land 2021, 10, 638. [Google Scholar] [CrossRef]
- Blake, W.H.; Kelly, C.; Wynants, M.; Patrick, A.; Lewin, S.; Lawson, J.; Nasolwa, E.; Page, A.; Nasseri, M.; Marks, C.; et al. Integrating land-water-people connectivity concepts across disciplines for co-design of soil erosion solutions. Land Degrad. Dev. 2021, 32, 3415–3430. [Google Scholar] [CrossRef]
- Zhang, G.; Majaliwa, M.J.; Xie, J. Leveraging the Landscape: Case Study of Erosion Control through Land Management in the Lake Victoria Basin; Natural Resource and Blue Economy Global Practice; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Van Griensven, A.; Popescu, I.; Abdelhamid, M.; Ndomba, P.M.; Beevers, L.; Betrie, G.D. Comparison of sediment transport computations using hydrodynamic versus hydrologic models in the Simiyu River in Tanzania. Phys. Chem. Earth Parts A/B/C 2013, 61, 12–21. [Google Scholar] [CrossRef]
- Rwetabula, J.; De Smedt, F.; Rebhun, M. Prediction of runoff and discharge in the Simiyu River (tributary of Lake Victoria, Tanzania) using the WetSpa model. Hydrol. Earth Syst. Sci. 2007, 4, 881–908. [Google Scholar]
- Kimwaga, R.; Bukirwa, F.; Banadda, N.; G Wali, U.; Nhapi, I.; Mashauri, D.A. Modelling the impact of land use changes on sediment loading into Lake Victoria using SWAT model: A Case of Simiyu Catchment Tanzania. Open Environ. Eng. J. 2012, 5, 66–76. [Google Scholar] [CrossRef]
- Natkhin, M.; Dietrich, O.; Schäfer, M.P.; Lischeid, G. The effects of climate and changing land use on the discharge regime of a small catchment in Tanzania. Reg. Environ. Chang. 2015, 15, 1269–1280. [Google Scholar] [CrossRef]
- James, R.; Amasi, A.I.; Wynants, M.; Nobert, J.; Mtei, K.M.; Njau, K. Tracing the dominant sources of sediment flowing towards Lake Victoria using geochemical tracers and a Bayesian mixing model. J. Soils Sediments 2023, 23, 1568–1580. [Google Scholar] [CrossRef]
- Lugomela, C.; Machiwa, J. Nutrients, Microalgae Sedimentation Sediment Associations at the Mouth of Simiyu River Lake Victoria, (Magu Bay of Speke Gulf) Lake Victoria, Tanzania; A Report Submitted to Lake Victoria Environmental Management Project (LVEMP); East African Community: Arusha, Tanzania, 2002; pp. 22–39. [Google Scholar]
- Cecinati, F. Precipitation Analysis for a Flood Early Warning System in the Manafwa River Basin, Uganda; Massachusetts Institute of Technology: Cambridge, MA, USA, 2013. [Google Scholar]
- Foley, J.; DeFries, R.; Asner, G.; Barford, C.; Bonan, G.; Carpenter, S.; Chapin, F.; Coe, M.; Daily, G.; Gibbs, H.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byerlee, D.; Stevenson, J.; Villoria, N. Does intensification slow crop land expansion or encourage deforestation? Glob. Food Secur. 2014, 3, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Bamutaze, Y.; Tenywa, M.M.; Majaliwa, M.J.G.; Vanacker, V.; Bagoora, F.; Magunda, M.; Obando, J.; Wasige, J. Infiltration characteristics of volcanic sloping soils on Mt. Elgon Eastern Uganda. Catena 2010, 80, 122–130. [Google Scholar]
- Bingwa, F. A Quantitative Analysis of the Impact of Land. Use Changes on Floods in the Manafwa River Basin; Massachusetts Institute of Technology: Cambridge, MA, USA, 2013. [Google Scholar]
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A review on hydrological models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Ullrich, A.; Volk, M. Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of alternative management practices on water quality and quantity. Vegetation and erosion Processes and environments. Agric. Water Manag. 2009, 96, 1207–1217. [Google Scholar] [CrossRef]
- Ullrich, A.; Volk, M. Application of soil and water assessment tools model for runoff estimation. Am. J. Appl. Sci. 2011, 8, 486–494. [Google Scholar]
- Lubini, A.; Adamowski, J. Assessing the potential impacts of four climate change scenarios on the discharge of the Simiyu River, Tanzania using the SWAT model. Int. J. Water Sci. 2013, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011; pp. 1–47.
- Taweesuk, S.; Thammapala, P. Expert classification technique for mapping teak plantation areas in Thailand. In Proceedings of the Pecora 16 “Global Priorities in Land Remote Sensing”, Sioux Falls, SD, USA, 23–27 October 2005. [Google Scholar]
- Araya, Y.H.; Cabral, P. Analysis and Modeling of Urban Land Cover Change in Setúbal and Sesimbra, Portugal. Remote Sens. 2010, 2, 1549–1563. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, B.; Ahmed, R.; Zhu, X. Evaluation of Model Validation Techniques in Land Cover Dynamics. ISPRS Int. J. Geo-Inf. 2013, 2, 577–597. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Dewitte, O.; Jones, A.; Spaargaren, O.; Breuning-Madsen, H.; Brossard, M.; Dampha, A.; Deckers, J.; Gallali, T.; Hallett, S.; Jones, R. Harmonisation of the soil map of Africa at the continental scale. Geoderma 2013, 211, 138–153. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Wang, X.; Kemanian, A.R.; Williams, J.R. Special features of the EPIC and APEX modeling package and procedures for parameterization, calibration, validation, and applications. In Methods of Introducing System Models into Agricultural Research; Wiley: Hoboken, NJ, USA, 2011; Volume 2, pp. 177–208. [Google Scholar]
- Teklay, A.; Dile, Y.T.; Asfaw, D.H.; Bayabil, H.K.; Sisay, K.; Ayalew, A. Modeling the impact of climate change on hydrological responses in the Lake Tana basin, Ethiopia. Dyn. Atmos. Ocean. 2022, 97, 101278. [Google Scholar] [CrossRef]
- Abbaspour, K.C. User Manual for SWAT-CUP, SWAT Calibration and Uncertainty Analysis Programs; Swiss Federal Institute of Aquatic Science and Technology (Eawag): Duebendorf, Switzerland, 2007; Volume 93. [Google Scholar]
- Abbaspour, K.C. SWAT Calibration and Uncertainty Programs; Swiss Federal Institute of Aquatic Science and Technology (Eawag): Dubendorf, Switzerland, 2015; pp. 17–66. [Google Scholar]
- Krysanova, V.; Kundzewicz, Z.; Piniewski, M.; Singh, V. Assessment of climate change impacts on water resources. In Handbook of Applied Hydrology; McGraw-Hill Education: New York, NY, USA, 2016; Chapter 148; pp. 1–12. [Google Scholar]
- Winchell, M.; Srinivasan, R.; Di Luzio, M.; Arnold, J. ArcSWAT Interface for SWAT2012: User’s Guide; Blackland Research and Extension Center, Agrilife Research: Temple, TX, USA; Grassland, Soil Water Research Laboratory, USDA Agricultural Research Service: Temple, TX, USA, 2013; pp. 1–464.
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Santos, C.A.; Almeida, C.; Ramos, T.B.; Rocha, F.A.; Oliveira, R.; Neves, R. Using a hierarchical approach to calibrate SWAT and predict the semi-arid hydrologic regime of northeastern Brazil. Water 2018, 10, 1137. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT Calibration Uncertainty Program—A User Manual SWAT-Cup 2012; Swiss Federal Institute of Aquatic Science and Technology (Eawag): Dubendorf, Switzerland, 2013. [Google Scholar]
- Mutenyo, I.; Nejadhashemi, A.; Woznicki, S.; Giri, S. Evaluation of SWAT performance on a mountainous watershed in tropical Africa. Hydrol. Curr. Res. 2013, 6, 1–7. [Google Scholar]
- Houle, D.; Bouffard, A.; Duchesne, L.; Logan, T.; Harvey, R. Projections of future soil temperature and water content for three Southern Quebec forested sites. J. Clim. 2012, 25, 7690–7701. [Google Scholar] [CrossRef]
- Cannon, A.J. Selecting GCM scenarios that span the range of changes in a multimodel ensemble: Application to CMIP5 climate extremes indices. J. Clim. 2014, 28, 1260–1267. [Google Scholar] [CrossRef]
- Pierce, D.W.; Barnett, T.P.; Santer, B.D.; Gleckler, P.J. Selecting global climate models for regional climate change studies. Proc. Natl. Acad. Sci. USA 2009, 106, 8441–8446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biemans, H.; Speelman, L.H.; Ludwig, F.; Moors, E.J.; Wiltshire, A.J.; Kumar, P.; Gerten, D.; Kabat, P. Future water resources for food production in five South Asian river basins and potential for adaptation—A modeling study. Sci. Total Environ. 2013, 468–469, S117–S131. [Google Scholar] [CrossRef] [PubMed]
- Wilby, R.L.; Wigley, T.M.L. Downscaling general circulation model output: A review of methods and limitations. Prog. Phys. Geogr. 1997, 21, 530–548. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Khan, S.; Ma, X. Climate change impacts on crop yield, crop water productivity and food security–A Review. Prog. Nat. Sci. 2009, 19, 1665–1674. [Google Scholar] [CrossRef]
- Bodian, A.; Dezetter, A.; Diop, L.; Deme, A.; Djaman, K.; Diop, A. Future climate change impacts on streamflows of two main West Africa river Basins: Senegal and Gambia. Hydrology 2018, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Hyandye, C.B. Impacts of Future Climate and Land Use Changes on Surface-Groundwater Balance in Usangu Catchment. Ph.D. Thesis, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania, 2019. [Google Scholar]
- Mfwango, H.L.; Ayenew, T.; Mahoo, H.F. Impacts of climate and land use/cover changes on streamflow at Kibungo sub-catchment, Tanzania. Heliyon 2022, 8, e112. [Google Scholar] [CrossRef]
- Hudson, N.; Ruane, A.C. Appendix 2—Guide for Running AgMIP Climate Scenario Generation Tools with R in Windows, Version 2.3; Imperial College Press: London, UK, 2013. [Google Scholar]
- Shrestha, B.; Babel, M.; Maskey, S.; Van Griensven, A.; Uhlenbrook, S.; Green, A.; Akkharath, I. Impact of climate change on sediment yield in the Mekong River basin: A case study of the Nam Ou basin, Lao PDR. Hydrol. Earth Syst. Sci. 2013, 17, 1. [Google Scholar] [CrossRef] [Green Version]
- Feleke, G. Evaluating the Impact of Climate Change on Hydrology in Scale Watershed, in Upper Blue Nile Basin. Ph.D. Dissertation, Bahir Dar University, Bahir Dar, Ethiopia, 2020. [Google Scholar]
- WMO. WMO Statement on the State of the Global Climate in 2016; World Meteorological Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Ndomba, P.; Mtalo, F.; Killingtveit, A. SWAT model application in a data scarce tropical complex catchment in Tanzania. Phys. Chem. Earth Parts A/B/C 2008, 33, 626–632. [Google Scholar] [CrossRef]
- Taylor, S.D.; He, Y.; Hiscock, K.M. Modelling the impacts of agricultural management practices on river water quality in Eastern England. J. Environ. Manag. 2016, 180, 147–163. [Google Scholar] [CrossRef] [Green Version]
- Patterson, L.A.; Lutz, B.; Doyle, M.W. Streamflow Changes in the South Atlantic, United States During the Mid-and Late 20th Century. J. Am. Water Resour. Assoc. 2012, 48, 1126–1138. [Google Scholar] [CrossRef]
- Kay, A.L.; Watts, G.; Wells, S.C.; Allen, S. The impact of climate change on UK river flows: A preliminary comparison of two generations of probabilistic climate projections. Hydrol. Process. 2020, 34, 1081–1088. [Google Scholar] [CrossRef]
- Intergovernmnetal Panel of Climate Change (IPCC). Impacts, Adaptation and Vulnerability: The Third Assessment Report of the Intergovernmental Panel on Climate Change—Renewable Energy; Cambridge University Press: Cambridge, UK, 2001; Volume 20, pp. 133–191. [Google Scholar]
- Parry, M.L.; Canziani, O.; Palutikof, J.; Van der Linden, P.; Hanson, C. Climate Change 2007—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Worqlul, A.W.; Jeong, J.; Dile, Y.T.; Osorio, J.; Schmitter, P.; Gerik, T.; Srinivasan, R.; Clark, N. Assessing potential land suitable for surface irrigation using groundwater in Ethiopia. Appl. Geogr. 2017, 85, 1–13. [Google Scholar] [CrossRef]
- Kassie, M.; Marenya, P.; Tessema, Y.; Jaleta, M.; Zeng, D.; Erenstein, O.; Rahut, D. Measuring farm and market level economic impacts of improved maize production technologies in Ethiopia: Evidence from panel data. J. Agric. Econ. 2018, 69, 76–95. [Google Scholar] [CrossRef]
- Kassie, M.; Teklewold, H.; Jaleta, M.; Marenya, P.; Erenstein, O. Understanding the adoption of a portfolio of sustainable intensification practices in eastern and southern Africa. Land Use Policy 2015, 42, 400–411. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Amasi, A.I.; Wynants, M.; Kawalla, R.A.; Sawe, S.; Munishi, L.; Blake, W.H.; Mtei, K.M. Evaluating Soil Carbon as a Proxy for Erosion Risk in the Spatio-Temporal Complex Hydropower Catchment in Upper Pangani, Northern Tanzania. Earth 2021, 2, 764–780. [Google Scholar] [CrossRef]
- Wilby, R.L.; Harris, I. A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK. Water Resour. Res. 2006, 42, W02419. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.-P.; Fu, G. Uncertainties in SWAT extreme flow simulation under climate change. J. Hydrol. 2014, 515, 205–222. [Google Scholar] [CrossRef]
- Qiao, L.; Zou, C.B.; Gaitán, C.F.; Hong, Y.; McPherson, R.A. Analysis of precipitation projections over the climate gradient of the Arkansas Red River basin. J. Appl. Meteorol. Climatol. 2017, 56, 1325–1336. [Google Scholar] [CrossRef]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Brigode, P.; Oudin, L.; Perrin, C. Hydrological model parameter instability: A source of additional uncertainty in estimating the hydrological impacts of climate change? J. Hydrol. 2013, 476, 410–425. [Google Scholar] [CrossRef] [Green Version]
Station ID | Meteorological Stations | Latitude ° S | Longitude ° E | Elevation | Daily Rainfall | Percentage Missing (NA%) |
---|---|---|---|---|---|---|
933305 | Maswa | −3.182 | 33.79098 | 1334 | 1971–2019 | 7.182 |
923301 | Sumve | −2.751 | 33.2265 | 1243 | 1971–2019 | 30.814 |
923240 | Talaga | −2.932 | 33.46581 | 1237 | 1971–2019 | 0.691 |
923401 | Sagata | −2.75 | 34.25 | 1394 | 1971–2019 | 17.227 |
933406 | Kisesa | −3.05 | 34.15 | 1343 | 1971–2019 | 45.915 |
Flow Index | Peak Discharge (m3s−1) | Difference | |
---|---|---|---|
Value | % | ||
Q5 | |||
Baseline | 206.8 | ||
LULC-Change (S2) | 207.5 | 0.74 | 0.36 |
Climate Change (S3) | 212.2 | 5.36 | 2.59 |
Combined Change(S4) | 213.7 | 6.91 | 3.34 |
Q25 | |||
Baseline | 294.1 | ||
LULC-Change (S2) | 295.1 | 0.92 | 0.31 |
Climate Change (S3) | 300.2 | 6.09 | 2.07 |
Combined Change (S4) | 310.2 | 16.08 | 5.47 |
Q100 | |||
Baseline | 366.2 | ||
LULC-Change (S2) | 367.3 | 1.06 | 0.29 |
Climate Change (S3) | 390.2 | 24.01 | 6.56 |
Combined Change (S4) | 400.4 | 34.13 | 9.32 |
Parameter | Description | Rank | |
---|---|---|---|
With Obs | Without Obs | ||
Cn2 | Curve number for moisture condition 11 | 1 | 1 |
Esco | Soil evaporation compensation factor | 2 | 2 |
Ch_K2 | Efficient hydraulic conductivity in the main channel alluvium (mm/hr) | 3 | 13 |
Surlag | Surface runoff lag coefficient | 4 | 16 |
Alpha_Bf | Baseflow alpha factor | 5 | 12 |
Ch_N2 | Manning n value for the main channel | 6 | 15 |
Canmx | Maximum canopy index | 7 | 5 |
Blai | Maximum potential leaf area index | 8 | 8 |
Sol_Awc | Available water capacity of the soil layer | 9 | 4 |
Sol_Z | Soil depth(mm) | 10 | 3 |
Slope | Average slope steepness(mm) | 11 | 7 |
Revapmn | Threshold depth of water in the shallow aquifer for revap or percolation to deep aquifer to occur | ||
12 | 10 | ||
Sol_K | Saturated hydraulic conductivity (mm/h) | 13 | 6 |
Gw_Revap | Ground water “revap” coefficient | 14 | 11 |
Gwqmn | Threshold depth of water in the shallow aquifer required for return flow to occur | 15 | 9 |
Epco | Plant uptake compensation factor | 16 | 14 |
Gw_Delay | Ground water delay | 17 | 18 |
Biomix | Biological mixing coefficient | 18 | 19 |
Slsubbsn | Average slope length | 19 | 20 |
Sn | Parameter Name | Fitted Value | Min Value | Max Value |
---|---|---|---|---|
1 | R__CN2.mgt | −0.13 | −0.13 | −0.11 |
2 | V__ALPHA_BF.gw | 0.64 | 0.60 | 0.66 |
3 | V__GW_DELAY.gw | 413.55 | 350.39 | 492.33 |
4 | V__GWQMN.gw | 1080.60 | 813.15 | 1092.62 |
5 | V__GW_REVAP.gw | 0.17 | 0.16 | 0.19 |
6 | V__RCHRG_DP.gw | 0.27 | 0.23 | 0.31 |
7 | V__SURLAG.bsn | 8.94 | 8.70 | 9.56 |
8 | V__CH_N2.rte | 0.16 | 0.16 | 0.17 |
9 | V__CH_K2.rte | 71.18 | 59.67 | 87.27 |
10 | V__ESCO.hru | 0.37 | 0.36 | 0.38 |
11 | V__CANMX.hru | 0.04 | 0.04 | 1.67 |
12 | R__HRU_SLP.hru | 0.46 | 0.40 | 0.48 |
13 | R__SOL_AWC(..).sol | −0.12 | −0.13 | -0.08 |
14 | R__SOL_K(..).sol | 0.51 | 0.40 | 0.51 |
15 | R__SLSUBBSN.hru | 0.13 | 0.12 | 0.20 |
16 | V__EPCO.hru | 0.79 | 0.78 | 0.83 |
Exceedance Probability (%) | Extreme Discharge (m3/s) (Baseline) | Extreme Discharge (m3/s) (RCP4.5) | Extreme Discharge (m3/s) (RCP6.0) | Extreme Discharge (m3/s) (RCP8.5) |
---|---|---|---|---|
0.01 | 379.6 | 466.0 | 451.3 | 413.2 |
1 | 232.8 | 276.9 | 214.3 | 239.7 |
5 | 102.2 | 136.5 | 72.3 | 129.3 |
10 | 34.2 | 65.5 | 32. | 62.6 |
20 | 14.8 | 16.8 | 10.9 | 16.8 |
25 | 10.6 | 10.9 | 8.0 | 11.1 |
50 | 6.5 | 3.9 | 5.3 | 3.8 |
75 | 5.1 | 2.8 | 3.9 | 3.0 |
90 | 4.0 | 2.0 | 2.8 | 2.6 |
95 | 3.2 | 1.9 | 1.9 | 2.7 |
99 | 1.4 | 0.1 | 0.2 | 0.1 |
100 | 1.2 | 0.00 | 0.0 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinhu, R.J.; Amasi, A.I.; Wynants, M.; Nobert, J.; Mtei, K.M.; Njau, K.N. Assessing the Impacts of Land Use and Climate Changes on River Discharge towards Lake Victoria. Earth 2023, 4, 365-383. https://doi.org/10.3390/earth4020020
Shinhu RJ, Amasi AI, Wynants M, Nobert J, Mtei KM, Njau KN. Assessing the Impacts of Land Use and Climate Changes on River Discharge towards Lake Victoria. Earth. 2023; 4(2):365-383. https://doi.org/10.3390/earth4020020
Chicago/Turabian StyleShinhu, Renatus James, Aloyce I. Amasi, Maarten Wynants, Joel Nobert, Kelvin M. Mtei, and Karoli N. Njau. 2023. "Assessing the Impacts of Land Use and Climate Changes on River Discharge towards Lake Victoria" Earth 4, no. 2: 365-383. https://doi.org/10.3390/earth4020020
APA StyleShinhu, R. J., Amasi, A. I., Wynants, M., Nobert, J., Mtei, K. M., & Njau, K. N. (2023). Assessing the Impacts of Land Use and Climate Changes on River Discharge towards Lake Victoria. Earth, 4(2), 365-383. https://doi.org/10.3390/earth4020020