Surface Urban Heat Island and Thermal Profiles Using Digital Image Analysis of Cities in the El Bajío Industrial Corridor, Mexico, in 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology for Obtaining Land Surface Temperature and Surface Urban Heat Islands from Landsat Images
2.3. Transects
2.3.1. Description of Categorization of El Bajío Cities for Transect Plotting
2.3.2. Land Cover and Current Land Use
- 11. PRIMARY ACTIVITIES. Natural resource exploitation.
- 21–23. SECONDARY ACTIVITIES. Transformation of goods such as mining, electricity, water, gas, and construction.
- 31–33. SECONDARY ACTIVITIES. Transformation of goods in manufacturing industries.
- 43–49. TERTIARY ACTIVITIES. Distribution of goods such as trade and transportation.
- 51–81. TERTIARY ACTIVITIES. These include services and information management.
- 93.TERTIARY ACTIVITIES. Government.
- The DENUE points were incorporated by an analysis of proximity to the blocks. They were therefore converted from points to polygons to identify the blocks in which economic activities were located.
- The blocks were subsequently classified according to the number of residential dwellings as well as the economic activity or activities that take place within them, Table 3.
2.3.3. Transect Design
3. Results
3.1. Landsat Daytime Land Surface Temperature 2020
3.2. Daytime Landsat Surface Urban Heat Island 2020
3.3. Transects
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1
Appendix A.2
Appendix B
References
- Rao, P.K. Remote sensing of urban “heat islands” from an environmental satellite. AMER Meteorol. Soc. 1972, 53, 647–648. [Google Scholar]
- Oleson, K.W.; Bonan, G.B.; Feddema, J. Effects of white roofs on urban temperature in a global climate model. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Fuentes Pérez, C.A. Islas de Calor Urbano en Tampico, México: Impacto del microclima a la calidad del hábitat. Nova Sci. 2015, 7, 495–515. [Google Scholar] [CrossRef] [Green Version]
- Morales Méndez, C.C.; Madrigal Uribe, D.; González Becerril, L.A. Isla de calor en Toluca, México. CIENCIA ergo-sum, Revista Científica Multidisciplinaria de Prospectiva. Atmósfera 2007, 14, 307–316. [Google Scholar] [CrossRef]
- Roth, M. Effects of cities on local climates. In Proceedings of the Workshop of Institute for Global Environment Studies/Asia-Pacific Network (IGES/APN) Mega-city Project, Kitakyushu, Japan, 23–24 January 2002. [Google Scholar]
- Oke, T.R. The urban energy balance. Prog. Phys. Geogr. 1988, 12, 471–508. [Google Scholar] [CrossRef]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef]
- Zhou, L.M.; Dickinson, R.E.; Tian, Y.H.; Fang, J.Y.; Li, Q.X.; Kaufmann, R.K.; Myneni, R.B. Evidence for a significant urbanization effect on climate in China. Proc. Natl. Acad. Sci. USA 2004, 101, 9540–9544. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.D.; Lister, D.H.; Li, Q. Urbanization effects in large scale temperature records, with an emphasis on China. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Parker, D.E. Urban heat island effects on estimates of observed climate change. WIREs Clim. Chang. 2010, 1, 123–133. [Google Scholar] [CrossRef]
- Fujibe, F. Detection of urban warming in recent temperature trends in Japan. Int. J. Climatol Q. J. R. Meteorol. Soc. 2009, 29, 1811–1822. [Google Scholar] [CrossRef]
- Stone, B. Urban and rural temperature trends in proximity to large US cities: 1951–2000. Int. J. Climatol Q. J. R. Meteorol. Soc. 2007, 27, 1801–1807. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Blackett, M.; Best, M.J.; Barlow, J.; Baik, J.-J.; Belcher, S.E.; Bohnenstengel, S.I.; Calmet, I.; Chen, F.; Dandou, A.; et al. The international urban energy balance models comparison project: First results from phase 1. J. Appl. Meteorol. Climatol. 2010, 49, 1268–1292. [Google Scholar] [CrossRef]
- Sabrin, S.; Karimi, M.; Nazari, R. Developing Vulnerability Index to Quantify Urban Heat Islands Effects Coupled with Air Pollution: A Case Study of Camden, NJ. ISPRS Int. J. Geo-Information 2020, 9, 349. [Google Scholar] [CrossRef]
- Nichol, J.E. High-resolution surface temperature patterns related to urban morphology in a tropical city: A satellite-based study. J. Appl. Meteorol. Climatol. 1996, 35, 135–146. [Google Scholar] [CrossRef]
- Streutker, D.R. A remote sensing study of the urban heat island of Houston, Texas. Int. J. Remote Sens. 2002, 23, 2595–2608. [Google Scholar] [CrossRef]
- Ángel, L.; Ramírez, A.; Domínguez, E. Isla de calor y cambios espacio-temporales de la temperatura en la ciudad de Bogotá. Rev. Acad. Colomb. Cienc. 2010, 34, 173–183. [Google Scholar]
- Nichol, J.; Wong, W.S. Modeling urban environmental quality in a tropical city. Landsc. Urban. Plan. 2005, 73, 49–58. [Google Scholar] [CrossRef]
- Owen, T.W.; Carlson, T.N.; Gillies, R.R. An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. Int. J. Remote Sens. 1998, 19, 1663–1681. [Google Scholar] [CrossRef] [Green Version]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Roth, M.; Oke, T.R.; Emery, W.J. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens. 1989, 10, 1699–1720. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Jáuregui, E. Heat island development in Mexico City. Atmos. Environ. 1997, 31, 3821–3831. [Google Scholar] [CrossRef]
- Barradas, V.L. La Isla de Calor Urbana y la Vegetación Arbórea; Oikos Publicación del Instituto de Ecología, UNAM: Ciudad de México, México, 2016; pp. 1–4. [Google Scholar]
- Romero Dávila, S.; Morales Méndez, C.C.; Némiga, X.A. Identificación de las islas de calor de verano e invierno en la ciudad de Toluca, México. Rev. Climatol. 2011, 11. [Google Scholar]
- Soto Diaz, A.B.; Pérez Ruiz, E.R. Uso de Percepción Remota y Sistemas de Información Geográfica Para la Determinación de ISLAS de Calor Urbano en Ciudad Juárez, Chihuahua. Memorias de Resúmenes en Extenso SELPER-XXI-México-UACJ-2015. 2015. Available online: https://www.uacj.mx/CGTI/CDTE/JPM/Documents/SELPER/assets/m016.pdf (accessed on 28 December 2022).
- CONAPO, SEDESOL, SEGOB. Catálogo Sistema Urbano Nacional 2018. México, Consejo Nacional de Población (CONAPO). Secretaría de Desarrollo Social (SEDESOL). Secretaría de Gobernación (SEGOB). 2018. Available online: http://www.gob.mx/cms/uploads/attachment/file/400771/SUN_2018.pdf (accessed on 28 December 2022).
- Marco Geoestadístico, Instituto Nacional de Estadística y Geografía (INEGI 2017). Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463142683 (accessed on 5 December 2021).
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Sobrino, J.A. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- GlobeLand30: Global Geo-Information Public Product. Available online: http://www.globallandcover.com/ (accessed on 5 December 2021).
- Resúmenes Mensuales de Temperaturas y Lluvia. Comisión Nacional del Agua (CONAGUA). Available online: https://smn.conagua.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluvias (accessed on 12 January 2021).
- Acharya, T.D.; Yang, I. Exploring Landsat 8. IJIEASR 2015, 4, 4–10. [Google Scholar]
- Ihlen, V. Landsat 8 (L8) Data Users Handbook; US Geological Survey: Sioux Falls, SD, USA, 2019. [Google Scholar]
- Sobrino, J.; Raissouni, N.; Li, Z.-L. A comparative study of land surface emissivity retrieval from NOAA data. Remote Sens. Environ. 2001, 75, 256–266. [Google Scholar] [CrossRef]
- Valor, E.; Caselles, V. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sens. Environ. 1996, 57, 167–184. [Google Scholar] [CrossRef]
- Van de Griend, A.; OWE, M. On the relationship between thermal emissivity and the Normalized Difference Vegetation Index for natural surfaces. Int. J. Remote Sens. 1993, 14, 1119–1131. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Sòria, G.; Romaguera, M.; Guanter, L.; Moreno, J.; Martínez, P. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 316–327. [Google Scholar] [CrossRef]
- Rouse, J. Monitoring the vernal advancement of retrogradation of natural vegetation. NASA/GSFC Type III Final. Rep. Greenbelt MD 1974, 371. [Google Scholar]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land Surface Temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Gillespie, A.; Sabol, D.; Gustafson, W.T. Improved land surface emissivities over agricultural areas using ASTER NDVI. Remote Sens. Environ. 2006, 103, 474–487. [Google Scholar] [CrossRef]
- Sobrino, J.; Caselles, V.; Becker, F. Significance of the remotely sensed thermal infrared measurements obtained over a citrus orchard. ISPRS J. Photogramm. Remote Sens. 1990, 44, 343–354. [Google Scholar] [CrossRef]
- Artis, D.A.; Carnahan, W.H. Survey of emissivity variability in thermography of urban areas. Remote Sens. Environ. 1982, 12, 313–329. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- SIAP (Servicio de Información Agroalimentaria y Pesquera). Panorama Agroalimentario 2020. Available online: https://nube.siap.gob.mx/gobmx_publicaciones_siap/pag/2020/Atlas-Agroalimentario-2020 (accessed on 18 January 2023).
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Taha, H. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.S.; Clay, M.; Martin, E.; Stuckey, D.; Vedder-Risch, K. Evaluating environmental influences of zoning in urban ecosystems with remote sensing. Remote Sens. Environ. 2003, 86, 303–321. [Google Scholar] [CrossRef]
- Maldonado, L.M.; Lovriha, I.M. Morfología de isla de calor urbana en Hermosillo, Sonora y su aporte hacia una ciudad sustentable. Biotecnia 2017, 19, 27–33. [Google Scholar] [CrossRef]
- Khan, M.S.; Ullah, S.; Chen, L. Comparison on Land-Use/Land-Cover Indices in Explaining Land Surface Temperature Variations in the City of Beijing, China. Land 2021, 10, 1018. [Google Scholar] [CrossRef]
- Chatterjee, S.; Gupta, K. Exploring the spatial pattern of urban heat island formation in relation to land transformation: A study on a mining industrial region of West Bengal, India. Remote Sens. Appl. Soc. Environ. 2021, 23, 100581. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J.; Banik, P. Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India. Sustain. Cities Soc. 2021, 74, 103186. [Google Scholar] [CrossRef]
- Gough, W.A. Thermal signatures of peri-urban landscapes. J. Appl. Meteorol. Climatol. 2020, 59, 1443–1452. [Google Scholar] [CrossRef]
- Pramanik, S.; Punia, M. Land use/land cover change and surface urban heat island intensity: Source–sink landscape-based study in Delhi, India. Environ. Dev. Sustain. 2020, 22, 7331–7356. [Google Scholar] [CrossRef]
Route | Row | ID | Date Obtained | Cloud Cover |
---|---|---|---|---|
029 | 045 | LC08_L1TP_029045_20200512_20200820_02_T1 | 05/12/2020 | 0.03 |
028 | 045 | LC08_L1TP_028045_20200521_20200820_02_T1 | 05/21/2020 | 0.21 |
027 | 046 | LC08_L1TP_027046_20200514_20200820_02_T1 | 05/14/2020 | 1.24 |
028 | 046 | LC08_L1TP_028046_20200521_20200820_02_T1 | 05/21/2020 | 0.03 |
027 | 045 | LC08_L1TP_027045_20200514_20200820_02_T1 | 05/14/2020 | 3.04 |
Metropolitan or Conurbated Area | NDVIs | NDVIv |
---|---|---|
* Aguascalientes | 0.065086 | 0.565007 |
0.0631847 | 0.537497 | |
Guanajuato | 0.112763 | 0.623928 |
Celaya | 0.122759 | 0.696545 |
San Miguel de Allende | 0.06 | 0.602271 |
Salamanca | 0.0957022 | 0.695735 |
San Francisco del Rincón | 0.12534 | 0.69975 |
León | 0.0739849 | 0.646419 |
Irapuato | 0.0851054 | 0.590401 |
La Piedad Pénjamo | 0.125289 | 0.534888 |
Moroleón | 0.08 | 0.502058 |
Querétaro | 0.102353 | 0.622047 |
San Juan del Rio | 0.115708 | 0.58884 |
Rioverde | 0.188243 | 0.614252 |
San Luis Potosí | 0.0652032 | 0.559044 |
Code | Current Type of Land Use | Contents |
---|---|---|
1 | Housing | Blocks with housing for purely residential use |
2 | Other uses | Blocks without housing containing secondary activities such as the transformation of goods such as mining, electricity, water, gas, and construction or tertiary government activities |
3 | Industry | Blocks without housing that contain secondary goods transformation activities in manufacturing industries |
4 | Mixed | Blocks with housing and secondary activities involving the transformation of goods in manufacturing industries |
5 | Mixed specialized | The specialized mixed category includes secondary activities involving the transformation of goods in manufacturing industries, as well as tertiary activities that include services and information management |
6 | Trade and services | This category includes tertiary activities involving the distribution of goods such as trade, transportation, services, and information management |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina-Fernández, S.L.; Núñez, J.M.; Barrera-Alarcón, I.; Perez-DeLaMora, D.A. Surface Urban Heat Island and Thermal Profiles Using Digital Image Analysis of Cities in the El Bajío Industrial Corridor, Mexico, in 2020. Earth 2023, 4, 93-150. https://doi.org/10.3390/earth4010007
Medina-Fernández SL, Núñez JM, Barrera-Alarcón I, Perez-DeLaMora DA. Surface Urban Heat Island and Thermal Profiles Using Digital Image Analysis of Cities in the El Bajío Industrial Corridor, Mexico, in 2020. Earth. 2023; 4(1):93-150. https://doi.org/10.3390/earth4010007
Chicago/Turabian StyleMedina-Fernández, Sandra Lizbeth, Juan Manuel Núñez, Itzia Barrera-Alarcón, and Daniel. A. Perez-DeLaMora. 2023. "Surface Urban Heat Island and Thermal Profiles Using Digital Image Analysis of Cities in the El Bajío Industrial Corridor, Mexico, in 2020" Earth 4, no. 1: 93-150. https://doi.org/10.3390/earth4010007