Influence of Infiltrations on the Recharge of the Nkoabang Aquifer Located in the Center Region, Cameroon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Space of the Study
2.2. Climate
2.3. Geomorphology
2.4. Hydrography
2.5. Geology
2.6. Social and Economic Context of the Studied City
2.7. Methodology
- –
- The accessibility and representativeness of water points. The works are chosen according to the existence of a path, giving access to them, and the solicitation of the population for the needs of consumption;
- –
- The spatial distribution in relation to the topography of the top of the slope, mid-slope, and the bottom of the low slope and the border of the marshy zone;
- –
- The agreement of the owners. A structure can only be selected for piezometric measurements if the owners give a favourable opinion on the request.
2.8. Measurement of Static Levels
2.9. Hydrometry
2.10. Laboratory Works
2.10.1. Preparation of the Piezometric Map
2.10.2. Water Balance according to Thornthwaite and Hydrological Balance
3. Results
3.1. Piezometric Data
3.2. Piezometric Maps of the Nkoabang Aquifer
3.3. Results of Thornthwaite Hydrologic and Hydric Balances [38]
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CDE | Cameroonian water company |
DE | flow deficit (mm) |
ETP | potential evapotranspiration (mm) |
ETR | real evapotranspiration (mm) |
GPS | Global Positioning System |
P | precipitations (mm) |
RFU | easily usable reserve (mm) |
He | sheet of water elapsed (mm) |
S | water layer available for total flow (mm) |
SS | dry season |
SP | rainy season |
ΔRFU | easily usable reserve variation (mm) |
WS | water surplus (mm) |
DA | agricultural deficit (mm) |
References
- Juompan-Yakam, C. Eau Yaoundé à L’heure du Système D. Available online: https://www.jeuneafrique.com/29881/economie/eau-yaound-l-heure-du-syst-me-d/ (accessed on 22 October 2022).
- Mougoué, B.; Nya, E.L. Croissance de la ville de Yaoundé et résiliences aux pandémies. Rev. Espace Géographique Société Maroc, No 43-44. 2021. Available online: https://doi.org/10.34874/IMIST.PRSM/EGSM/24582 (accessed on 22 October 2022).
- Nkengfack, H.; Noubissi Domguia, E.; Kamajou, F. Analyse des Determinants de L’offre de L’eau Potable au Cameroun. 2017. Available online: https://hal.archives-ouvertes.fr/hal-01510111/document (accessed on 22 October 2022).
- Feumba, R. Hydrogéologie en Zone de Socle Cristallin: Cas du Bassin Versant de l’Ekozoa, Secteur Nord de la Ville de Yaoundé—Cameroun; University of Yaoundé I: Yaoundé, Cameroon, 2005; 94p. [Google Scholar]
- Ntep, F. Hydrodynamique et Qualité des Eaux des Nappes en Zone de Socle Cristallin Fissuré et Altéré: Cas du Bassin Versant de la Mingoa (Yaoundé—Cameroun); University of Yaoundé I: Yaoundé, Cameroon, 2005; 84p. [Google Scholar]
- Kalla Mpako, F. Caractérisation Physique et Hydrodynamique de L’aquifère à Nappe Libre du Bassin Versant de Ntem à Yaoundé—Cameroun; University of Yaoundé I: Yaoundé, Cameroon, 2007; 99p. [Google Scholar]
- Priso, B.F. Etude des Caractéristiques Physiques, Hydrodynamiques et de la Vulnérabilité de L’aquifère à Nappe Libre du Bassin Versant de l’Ebogo—Ewe à Yaoundé; University of Yaoundé I: Yaoundé, Cameroon, 2007; 86p. [Google Scholar]
- Bon, A.F. Hydrodynamique d’un Bassin Zone de Socle Cristallin Fracturé et Altéré: Cas du Bassin Versant de l’Olezoa, Yaoundé—Cameroun; University of Yaoundé I: Yaoundé, Cameroon, 2008; 78p. [Google Scholar]
- Kuate, D.T. Etude Hydrodynamique des Nappes en Zone De socle Cristallin du Bassin Versant de la Biyemé à Yaoundé Cameroun; University of Yaoundé I: Yaoundé, Cameroon, 2008; 69p. [Google Scholar]
- Kendzo, N.J. Etude Piézométrique, Hydrochimique et Bactériologique des Nappes en Zone de Socle Cristallin: Cas du Bassin Versant de Ntsomo (Yaoundé—Cameroun); University of Yaoundé I: Yaoundé, Cameroon, 2008; 72p. [Google Scholar]
- Fouépé, T.A.; Fantong, W.; Ndam Ngoupayou, J.R.; et Sigha Nkamdjou, L. Comparative Analysis for Estimating Hydraulic Conductivity Values to Improve the Estimation of Groundwater Recharge in Yaoundé-Cameroon. Br. J. Environ. Clim. Chang. 2011, 2, 391–409. [Google Scholar]
- Ngouh, A.N. Caractérisation Physique et Hydrodynamique de L’aquifère à Nappe Libre en Zone de Socle Cristallin Fracturé et Altère: Cas du Bassin Versant du Nkié Yaoundé (Cameroun); University of Yaoundé I: Yaoundé, Cameroon, 2012. [Google Scholar]
- Mfokapouré, C. Caractérisation Physique et Hydrodynamique de L’aquifère à Nappe Libre du Bassin Versant d’Odza (Yaoundé—Cameroun); University of Yaoundé I: Yaoundé, Cameroon, 2012; 74p. [Google Scholar]
- Ewodo, M.G.; Ombolo, A.A.; Fouepe, T.; Bon, A.; Ekodeck, G.E. Etude des Paramètres hydrauliques des aquifères de sub-surface du bassin versant de la Mingosso, région de Yaoundé. Rév. CAMES-Série A 2012, 13, 123–127. [Google Scholar]
- Djeuda, T.H.; Tanawa, E.; Siakeu, J.; Ngo Massana, B. Mode de circulation, mécanisme de recherche et temps relatif de séjour des eaux des nappes souterraines des altérites en milieu cristallin: Cas du bassin versant de l’Anga’a, Yaoundé-Cameroun. In Géosciences au Cameroun; Bilong, P., Vivat, J.P., Eds.; University of Yaoundé I: Yaoundé, Cameroon, 1999; pp. 117–126. [Google Scholar]
- Djeuda Tchapnga, H.B.; Tanawa, E.; Temgoua, E.; Ngnikam, E.; Siakeu, J.; et Ngo Massana, B. Caractéristiques Structurales et Propriétés Hydrodynamiques des Altérites de la Zone Périurbaine de Yaoundé IV—Cameroun; University of Yaoundé I: Yaoundé, Cameroon, 2000; 17p. [Google Scholar]
- Medza, E.J. Piézométrie, Hydrodynamique et Battement des Nappes Souterraines en Zone de Socle Cristallin: Cas du Bassin Versant de l’Anga’a Sud-Est de Yaoundé; University of Yaoundé I: Yaoundé, Cameroon, 2002; 86p. [Google Scholar]
- Fouépé, T.A.; Ndam, N.J.; Riotte, J.; Takem, G.E.; Mafany, G.; Marechal, J.C.; Ekodeck, G.E. Estimation of groundwater recharge of the shallow aquifer on the humid environment in Yaounde, Cameroon using hybrid water fluctuation and hydrochemistry methods. Environ. Earth Sci. 2010, 64, 107–118. [Google Scholar] [CrossRef]
- Ntsama, K.R. Caractérisation Physique et Piézométrique des Eaux de Puits de Nkoabang (Yaoundé Cameroun); University of Yaoundé I: Yaoundé, Cameroon, 2018; 62p. [Google Scholar]
- Loizeau, S.; Rossier, Y.; Gaudet, J.-P.; Refloch, A.; Besnard, K.; Angulo-Jaramillo, R.; Lassabatere, L. Water infiltration in an aquifer recharge basin affected by temperature and air entrapment. J. Hydrol. Hydromech. 2017, 65, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Samanta, T. Seasonal Variation of Infiltration Rates Through Pond Bed in a Managed Aquifer Recharge System. Master’s Thesis, Texas A&M University, College Station, TX, USA, August 2018. [Google Scholar]
- Revueltas-Martínez, J.-E.; Mercado-Fernández, T.; Aguirre-Forero, S. Potential Infiltration Determination in Areas of Influence of the Zona Bananera Aquifer in Northern Colombia. Rev. Fac. Ing. 2020, 29, e11427. [Google Scholar] [CrossRef]
- Qi, T.; Shu, L.; Li, H.; Wang, X.; Men, Y.; Opoku, P.A. Water Distribution from Artificial Recharge via Infiltration Basin under Constant Head Conditions. Water 2021, 13, 1052. [Google Scholar] [CrossRef]
- Niyazi, B.; Masoud, M.; Elfeki, A.; Rajmohan, N.; Alqarawy, A.; Rashed, M. A Comparative Analysis of Infiltration Models for Groundwater Recharge from Ephemeral Stream Beds: A Case Study in Al Madinah Al Munawarah Province, Saudi Arabia. Water 2022, 14, 1686. [Google Scholar] [CrossRef]
- Thomas, B.F.; Behrangi, A.; Famiglietti, J.S. Precipitation intensity effects on groundwater recharge in the Southwestern United States. Water 2016, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, A.R.; Morris, B.L.; Foster, S.S.D. Hazards induced by groundwater under rapid urbanization. In Geohazards in Engineering Geology; Maunds, J.G., Eddleston, M., Eds.; Geological Society, Engineering Geology Special Publications: London, UK, 1998; Volume 15, pp. 319–328. [Google Scholar]
- Jinno, K.; Tsutsumi, A.; Alkaeed, O.; Saita, S.; Berndtsson, R. Effects of land-use change on groundwater recharge model parameters. Hydrol. Sci. J. 2009, 54, 300–315. [Google Scholar] [CrossRef]
- Ganot, Y.; Holtzman, R.; Weisbrod, N.; Nitzan, I.; Katz, Y.; Kurtzman, D. Monitoring and modeling infiltration–recharge dynamics of managed aquifer recharge with desalinated seawater. Hydrol. Earth Syst. Sci. 2017, 21, 4479–4493. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, I.; Ahmed, S.S. Assessment of the hydraulic performance of groundwater recharge techniques. Int. J. Water Resour. Arid. Environ. 2013, 2, 120–124. [Google Scholar]
- Liang, X.; Zhan, H.; Zhang, Y.-K. Aquifer recharge using a vadose zone infiltration well. Water Resour. Res. 2018, 54, 8847–8863. [Google Scholar] [CrossRef]
- Marks, R.J.; Lawrence, A.R.; Humpage, A.J.; Hargreaves, R. Recharge through Till: Developing a Methodology for Estimating Groundwater Recharge with Examples from Two Case Studies in East Anglia. Available online: https://nora.nerc.ac.uk/id/eprint/12635/ (accessed on 22 October 2022).
- Sighomnou, D. Analyse et Redéfinition des Regimes Climatiques et Hydrologiques du Cameroun: Perspectives D’évolution des Ressources en Eau. Ph.D. Thesis, University of Yaoundé I, Yaoundé, Cameroon, 2004; 268p. [Google Scholar]
- Ekodeck, G.E.; Kamgang, K.V. L’altérologie Normative et Ses Applications. Une Expression Particulière de la Pétrologie des Roches Aluminosilicatées du Point de Vue de Leur Evolution Supergène; University of Yaoundé I: Yaoundé, Cameroon, 2002; 231p. [Google Scholar]
- Kamgang, B.K.; Ekodeck, G.E. Altération et bilans géochimiques des biotites des gneiss de Nkolbisson (NW de Yaoundé, Cameroun). Géodynamique 1991, 6, 191–199. [Google Scholar]
- Onguene, M. Différenciations Pédologiques dans la Région de Yaoundé (Cameroun): Transformation d’un Sol Rouge Ferraliitique en Sol à Horizon Jaune et Relation avec L’évolution du Modelé. Ph.D. Thesis, Université de Paris VI, Paris, France, 1993. [Google Scholar]
- Bilong, P.; Eno, B.M.; Volkoff, B. Séquence d’évolution des paysages et des sols ferrallitiques en zone forestière tropicale d’Afrique centrale. Place des sols à horizon d’argile tachetée. C.R. Acad. Sci. Paris Sér. II 1992, 314, 109–115. [Google Scholar]
- BUCREP. Troisième Recensement Général de la Population et de L’habitat: Rapport de Présentation des Résultats Définitifs. République du Cameroun. 2010. Available online: www.burcrup.cm/index.php/fr/re (accessed on 22 October 2022).
- Thornthwaite, C. The Measurement of Potential Evapotranspiration; Mather, J.R., Ed.; Seabrook: Deerfield, NJ, USA, 1954; 225p. [Google Scholar]
- Remenieras, G. Hydrologie de L’ingénieur. Available online: https://www.persee.fr/doc/rga_0035-1121_1961_num_49_3_2001_t1_0593_0000_1 (accessed on 22 October 2022).
- Rusnam, R.; Yanti, N.R. Potential evapotranspiration uses Thornthwaite Method to the water balance in Padang City. IOP Conf. Ser. Earth Environ. Sci. 2021, 757, 012041. [Google Scholar] [CrossRef]
- Nugroho, A.R.; Tamagawa, I.; Riandraswari, A.; Febrianti, T. Thornthwaite-Mather water balance analysis in Tambakbayan watershed, Yogyakarta, Indonesia. MATEC Web Conf. 2019, 280, 05007. [Google Scholar] [CrossRef] [Green Version]
- Hendrayana, H.; Widyastuti, M.; Riyanto, I.A.; Nuha, A.; Widasmara, M.Y.; Ismayuni, N.; Rachmi, I.N. Thornthwaite and Mather water balance method in Indonesian tropical area. IOP Conf. Ser. Earth Environ. Sci. 2021, 851, 012011. [Google Scholar] [CrossRef]
- Moghaddam, T.E.; Mohammadkhan, S. An estimation of Thornthwaite monthly water-balance in Mighan sub-basin. Nat. Environ. Chang. 2017, 3, 71–80. [Google Scholar] [CrossRef]
- Yashvant, D. Water Balance and Climatic Classification of a Tropical City Delhi India. Am. J. Water Resour. 2015, 3, 124–146. [Google Scholar] [CrossRef]
- Olivry, J.C. Fleuves et Rivières du Cameroun; Monographies Hydrologiques; MESRES/ORSTOM: Paris, France, 1986. [Google Scholar]
- Jean-Baptiste, E. Etude de la Recharge des Nappes Phréatiques en Milieu Urbain: Cas du Bassin Versant de l’Akée (Yaoundé—Cameroun); University of Yaoundé I: Yaoundé, Cameroon, 2012; 72p. [Google Scholar]
- Bon, A.F. Modélisation de la Structure et du Fonctionnement des Aquifères du Socle Fracturé et Altéré dans le Bassin Versant de l’Olézoa, Yaoundé—Cameroun. Ph.D. Thesis, University of Yaoundé I, Yaoundé, Cameroon, 2016; 185p. [Google Scholar]
- Sendjoun, K.G. Caractérisation Physique et Piézométrique des Eaux Souterraines de la Zone de Messamendongo et ses Environs (Yaounde—Cameroun); University of Yaoundé I: Yaoundé, Cameroon, 2018; 68p. [Google Scholar]
- Aschonitis, V.; Touloumidis, D.; Veldhuis, M.-C.T.; Coenders-Gerrits, M. Correcting Thornthwaite potential evapotranspiration using a global grid of local coefficients to support temperature-based estimations of reference evapotranspiration and aridity indices. Earth Syst. Sci. Data 2022, 14, 163–177. [Google Scholar] [CrossRef]
Wells and Source. | Z (m) | Hp (m) Dry Season | Hp (m) Rainy Season | Average Hp (m) | Deviation Amplitude (Uncertainty) (m) |
---|---|---|---|---|---|
S (source) | 707 | - | - | - | - |
P1 (well) | 718 | 6.9 | 5.4 | 6.15 | 1.5 |
P2 (well) | 723 | 11.4 | 11 | 11.2 | 0.4 |
P3 (well) | 715 | 9 | 8.4 | 8.2 | 0.6 |
P4 (well) | 728 | 18 | 17.5 | 17.75 | 0.5 |
P5 (well) | 726 | 12.3 | 9 | 10.65 | 3.3 |
P6 (well) | 729 | 11 | 10 | 10.5 | 1 |
P7 (well) | 728 | 16 | 15 | 15.5 | 1 |
average | - | 12.09 | 10.9 | 11.49 | 1.19 |
Standard deviation(m) (Uncertainty) | - | 3.84 | 4.11 | 3.94 | - |
Positions | H (m) Dry Season | H (m) Rainy Season | Average H (m) |
---|---|---|---|
S (source) | - | - | |
P1 (well) | 711.1 | 712.6 | 711.85 |
P2 (well) | 711.6 | 712 | 711.8 |
P3 (well) | 706 | 706.6 | 706.3 |
P4 (well) | 710 | 710.5 | 710.25 |
P5 (well) | 713.6 | 717 | 715.3 |
P6 (well) | 718 | 719 | 718.5 |
P7 (well) | 712 | 713 | 712.5 |
average | 711.76 | 712.95 | 712.36 |
Standard deviation (Uncertainty) | 3.63 | 4.09 | 3.83 |
Months | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rain | 18.8 | 51.2 | 138.4 | 186.6 | 207.7 | 157.8 | 73.3 | 95 | 230.6 | 284.2 | 118.8 | 23 | 1586 |
Temp | 24.6 | 25.4 | 25.1 | 24.7 | 24.3 | 23.5 | 22.8 | 23.8 | 23.3 | 23.4 | 23.9 | 24 | 24.1 |
ETP | 102.4 | 112 | 115 | 114 | 108 | 94 | 92 | 85 | 88 | 91 | 102 | 95 | 1107 |
ETR | 46.8 | 51.2 | 115 | 114 | 108 | 94 | 92 | 85 | 88 | 91 | 102 | 95 | 1012 |
RFU | 0 | 0 | 23.4 | 100 | 100 | 100 | 81.3 | 84.3 | 100 | 100 | 100 | 28 | 817 |
ΔRFU | −28 | 0 | 23.4 | 76.6 | 0 | 0 | −19 | 3 | 100 | 0 | 0 | −62 | 94 |
DA | 55.8 | 60.8 | 0 | 0 | 0 | 0 | 0 | 0 | 15.4 | 0 | 02 | 0 | 134 |
WS | 0 | 0 | 0 | 0 | 99.7 | 49.8 | 16.2 | 5 | 117 | 282 | 17 | 0 | 587 |
S | 30 | 12 | 0 | 0 | 90 | 102 | 60 | 70 | 106 | 208 | 90 | 30 | 798 |
P-ETP | 83.6 | −61 | 23.4 | 72.6 | 99.7 | 63.8 | −18.7 | 10 | 142.6 | 193.2 | 16.8 | −72 | 387 |
a | −0.82 | −0.54 | 0.2 | 0.64 | 0.92 | 0.68 | −0.2 | 0.11 | 1.62 | 2.12 | 0.16 | −0.8 | 4.15 |
DE | 55.6 | −61 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tagne, M.M.; Simo-Tagne, M.; Nwakuba, N.R.; Effoudou-Priso, E.N.; Ngoupayou, J.R.N.; Mbessa, M.; Tagne, A.T.; Kharchi, R. Influence of Infiltrations on the Recharge of the Nkoabang Aquifer Located in the Center Region, Cameroon. Earth 2023, 4, 23-39. https://doi.org/10.3390/earth4010002
Tagne MM, Simo-Tagne M, Nwakuba NR, Effoudou-Priso EN, Ngoupayou JRN, Mbessa M, Tagne AT, Kharchi R. Influence of Infiltrations on the Recharge of the Nkoabang Aquifer Located in the Center Region, Cameroon. Earth. 2023; 4(1):23-39. https://doi.org/10.3390/earth4010002
Chicago/Turabian StyleTagne, Monique Makuate, Merlin Simo-Tagne, Nnaemeka R. Nwakuba, Estelle Ndome Effoudou-Priso, Jules Rémy Ndam Ngoupayou, Michel Mbessa, Ablain Tagne Tagne, and Razika Kharchi. 2023. "Influence of Infiltrations on the Recharge of the Nkoabang Aquifer Located in the Center Region, Cameroon" Earth 4, no. 1: 23-39. https://doi.org/10.3390/earth4010002
APA StyleTagne, M. M., Simo-Tagne, M., Nwakuba, N. R., Effoudou-Priso, E. N., Ngoupayou, J. R. N., Mbessa, M., Tagne, A. T., & Kharchi, R. (2023). Influence of Infiltrations on the Recharge of the Nkoabang Aquifer Located in the Center Region, Cameroon. Earth, 4(1), 23-39. https://doi.org/10.3390/earth4010002