The Business Side of Ecosystem Services of Soil Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Compilation
2.2. The Accounting Framework
3. Results
3.1. Examples of Monetary Valuations Based on Soil Properties and Organizational Hierarchy of Soil Systems
3.1.1. Soil System (Scale)
3.1.2. Soil System (Time)
3.1.3. Soil System (Degree of Computation and Degree of Complexity)
3.2. Examples of Monetary Valuations Based on Interaction of Pedosphere with Earth’s Other Spheres and Organizational Hierarchy of Soil Systems
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Farley, J. Ecosystem services: The economics debate. Ecosyst. Serv. 2012, 1, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Watson, S.C.L.; Newton, A.C. Dependency of businesses on flows of ecosystem services: A case study from the county of Dorset, UK. Sustainability 2018, 10, 1368. [Google Scholar] [CrossRef] [Green Version]
- Davies, J. The business case for soil. Nature 2017, 543, 309–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baveye, P.C.; Baveye, J.; Gowdy, J. Soil “ecosystem” services and natural capital: Critical appraisal of research on uncertain ground. Front. Environ. Sci. 2016, 4. [Google Scholar] [CrossRef]
- Van Es, H. A new definition of soil. CSA News 2017, 62, 20–21. [Google Scholar] [CrossRef] [Green Version]
- Targulian, V.O.; Arnold, R.W.; Miller, B.A.; Brevik, E.C. Pedosphere. In Encyclopedia of Ecology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 4, pp. 162–168. [Google Scholar]
- Mattson, S. The constitution of the pedosphere. Ann. Agric. Coll. Swed. 1938, 5, 261–279. [Google Scholar]
- Heal, G. Nature and the Marketplace: Capturing the Value of Ecosystem Services; Island Press: Washington, DC, USA, 2000. [Google Scholar]
- Dijkerman, J.C. Pedology as a science: The role of data, models and theories in the study of natural soil systems. Geoderma 1974, 11, 73–93. [Google Scholar] [CrossRef]
- Hoosbeek, M.R.; Bryant, R.B. Towards the quantitative modeling of pedogenesis—A review. Geoderma 1992, 55, 183–210. [Google Scholar] [CrossRef]
- Chandler, R.D.; Mikhailova, E.A.; Post, C.J.; Moysey, S.M.J.; Schlautman, M.A.; Sharp, J.L.; Motallebi, M. Integrating soil analyses with frameworks for ecosystem services and organizational hierarchy of soil systems. Commun. Soil Sci. Plant Anal. 2018, 49, 1835–1843. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- USDA/NRCS. National Soil Survey Center: Partnership, Technical Excellence, Service; Brochure; National Soil Survey Center: Lincoln, NE, USA, April 2014.
- Groshans, G.R.; Mikhailova, E.A.; Post, C.J.; Schlautman, M.A. Accounting for soil inorganic carbon in the ecosystem services framework for the United Nations sustainable development goals. Geoderma 2018, 324, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Mikhailova, E.A.; Groshans, G.R.; Post, C.J.; Schlautman, M.A.; Post, G.C. Valuation of total soil carbon stocks in the contiguous United States based on the avoided social cost of carbon emissions. Resources 2019, 8, 157. [Google Scholar] [CrossRef] [Green Version]
- Groshans, G.R.; Mikhailova, E.A.; Post, C.J.; Schlautman, M.A.; Zhang, L. Determining the value of soil inorganic carbon stocks in the contiguous United States based on the avoided social cost of carbon emissions. Resources 2019, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Rawlins, B.G.; Henrys, P.; Breward, N.; Robinson, D.A.; Keith, A.M.; Garcia-Bajo, M. The importance of inorganic carbon in soil carbon databases and stock estimates: A case study from England. Soil Use Manag. 2011, 27, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Clarivate Analytics. Web of Science. Subscription-Based Website. 2020. Available online: https://clarivate.com/tag/web-of-science/ (accessed on 21 July 2020).
- Pavan, A.L.R.; Ometto, A.R. Ecosystem services in life cycle assessment: A novel conceptual framework for soil. Sci. Total Environ. 2018, 643, 1337–1347. [Google Scholar] [CrossRef] [PubMed]
- Pachepsky, Y.; Hill, R.L. Scale and scaling in soils. Geoderma 2017, 287, 4–30. [Google Scholar] [CrossRef]
- Mikhailova, E.A.; Altememe, A.H.; Bawazir, A.A.; Chandler, R.D.; Cope, M.P.; Post, C.J.; Stiglitz, R.Y.; Zurqani, H.A.; Schlautman, M.A. Comparing soil carbon estimates in glaciated soils at a farm scale using geospatial analysis of field and SSURGO data. Geoderma 2016, 281, 119–126. [Google Scholar] [CrossRef] [Green Version]
- EPA. The Social Cost of Carbon. EPA Fact Sheet. 2016. Available online: https://19january2017snapshot.epa.gov/climatechange/social-cost-carbon_.html (accessed on 15 March 2019).
- Guo, Y.; Amundson, R.; Gong, P.; Yu, Q. Quantity and spatial variability of soil carbon in the conterminous United States. Soil Sci. Soc. Am. J. 2006, 70, 590–600. [Google Scholar] [CrossRef] [Green Version]
- USGS. Minerals Yearbook, 2014: Stone, Crushed (Advance Release); USA Department of the Interior, USA Geological Survey: Reston, VA, USA, April 2016; p. 71.2. Available online: https://minerals.usgs.gov/minerals/pubs/commodity/stone_crushed/myb1-2014-stonc.pdf (accessed on 20 July 2018).
- Zurek, M.B.; Henrichs, T. Linking scenarios across geographical scales in international environmental assessments. Technol. Forecast. Soc. Change 2007, 74, 1282–1295. [Google Scholar] [CrossRef]
- Reyer, C.P.O.; Brouwers, N.; Rammig, A.; Brook, B.W.; Epila, J.; Grant, R.F.; Holmgren, M.; Langerwisch, F.; Leuzinger, S.; Lucht, W.; et al. Forest resilience and tipping points at different spatio-temporal scales: Approaches and challenges. J. Ecol. 2015, 103, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Bockheim, J.G.; Hinkel, K.M. The importance of “deep” organic carbon in permafrost-affected soils of Arctic Alaska. SSSAJ Soil Sci. Soc. Am. J. 2007, 71, 1889–1892. [Google Scholar] [CrossRef]
- Streletskiy, D.A.; Suter, L.J.; Shiklomanov, N.I.; Porfiriev, B.N.; Eliseev, D.O. Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost. Environ. Res. Lett. 2019, 14, 025003. [Google Scholar] [CrossRef]
- Ping, C.L.; Jastrow, J.D.; Jorgenson, M.T.; Michaelson, G.J.; Shur, Y.L. Permafrost soils and carbon cycling. Soil 2015, 1, 147–171. [Google Scholar] [CrossRef] [Green Version]
- Waelbroeck, C.; Monfray, P.; Oechel, W.C.; Hastings, S.; Vourlitis, G. The impact of permafrost thawing on the carbon dynamics of tundra. Geophys. Res. Lett. 1997, 24, 229–232. [Google Scholar] [CrossRef]
- Zhuang, Q.; Melillo, J.M.; Sarofim, M.C.; Kicklighter, D.W.; McGuire, A.D.; Felzer, B.S.; Sokolov, A.; Prinn, R.G.; Steudler, P.A.; Hu, S. CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century. Geophys. Res. Lett. 2006, 33, L17403. [Google Scholar] [CrossRef] [Green Version]
- Koven, C.D.; Ringeval, B.; Friedlingstein, P.; Ciais, P.; Cadule, P.; Khvorostyanov, D.; Krinner, G.; Tarnocai, C. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl. Acad. Sci. USA 2011, 108, 14769–14774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaefer, K.; Zhang, T.; Bruhwiler, L.; Barrett, A.P. Amount and timing of permafrost carbon release in response to climate warming. Tellus B 2011, 63, 165–180. [Google Scholar] [CrossRef]
- Burke, E.J.; Hartley, I.P.; Jones, C.D. Uncertainties in the global temperature change caused by carbon release from permafrost thawing. Cryosphere 2012, 6, 1063–1076. [Google Scholar] [CrossRef] [Green Version]
- MacDougall, A.H.; Avis, C.A.; Weaver, A.J. Significant existing commitment to warming from the permafrost carbon feedback. Nat. Geosci. 2012, 5, 719–721. [Google Scholar] [CrossRef]
- Schneider von Deimling, T.; Meinshausen, M.; Levermann, A.; Huber, V.; Frieler, K.; Lawrence, D.M.; Brovkin, V. Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences 2012, 9, 649–665. [Google Scholar] [CrossRef] [Green Version]
- Gershkovich, E. In Siberian Fuel Spill, Climate Change Is Seen as Major Factor. The Moscow Times, 2020. Available online: https://www.themoscowtimes.com/2020/06/05/in-siberian-fuel-spill-climate-change-is-seen-as-major-factor-a70494 (accessed on 5 June 2020).
- Brantley, S.L. Understanding soil time. Science 2008, 321, 1454–1455. [Google Scholar] [CrossRef] [PubMed]
- Amundson, R. The carbon budget in soils. Annu. Rev. Earth Planet. Sci. 2001, 29, 535–562. [Google Scholar] [CrossRef]
- Mikhailova, E.A.; Zurqani, H.A.; Post, C.J.; Schlautman, M.A. Assessing ecosystem services of atmospheric calcium and magnesium deposition for potential soil inorganic carbon sequestration. Geosciences 2020, 10, 200. [Google Scholar] [CrossRef]
- Smith, P.; Andrén, O.; Karlsson, T.; Perälä, P.; Regina, K.; Rounsevell, M.; Van Wesemaels, B. Carbon sequestration potential in European croplands has been overestimated. Global Change Biol. 2005, 11, 2153–2163. [Google Scholar] [CrossRef]
- Richter, D.B.; Bacon, A.R.; Brecheisen, Z.; Mobley, M.L. Soil in the Anthropocene. Soil change matters. 2014. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bendigo, Victoria, Australia, 24–27 March 2014; Volume 25, p. 012010. [Google Scholar] [CrossRef] [Green Version]
- Trudgill, S. “Dirt cheap”—Cultural constructs of soil: A challenge for education about soils? J. Geogr. Higher Educ. 2006, 30, 7–14. [Google Scholar] [CrossRef]
- Stockmann, U.; Minasny, B.; McBratney, A.B. How fast does soil grow? Geoderma 2014, 216, 48–61. [Google Scholar] [CrossRef]
- Mikhailova, E.A.; Schlautman, M.A.; Darnault, C.J.G.; Sharp, J.L.; Post, C.J.; Hall, K.C.; Outz, E.V.; Barfield, M.A. Effects of compost on the chemistry of an urban Upper Piedmont South Carolina soil. Commun. Soil Sci. Plant Anal. 2015, 22, 2787–2797. [Google Scholar] [CrossRef]
- Mikhailova, E.A.; Bryant, R.B.; Galbraith, J.M.; Wang, Y.; Post, C.J.; Khokhlova, O.S.; Schlautman, M.A.; Cope, M.P.; Shen, Z. Pedogenic carbonates and radiocarbon isotopes of organic carbon at depth in the Russian Chernozem. Geosciences 2018, 8, 458. [Google Scholar] [CrossRef] [Green Version]
- Drohan, P.J.; Farnham, T.J. Protecting life’s foundation: A proposal for recognizing rare and threatened soils. Soil Sci. Soc. Am. J. 2006, 70, 2086–2096. [Google Scholar] [CrossRef]
- Pearce, F. Arctic permafrost set to disappear over next century. New Sci. 2006, 2537, 15. [Google Scholar]
- Plaza, C.; Pegoraro, E.; Bracho, R.; Celis, G.; Crummer, K.G.; Hutchings, J.A.; Pries, C.E.H.; Mauritz, M.; Natali, S.M.; Salmon, V.G.; et al. Direct observation of permafrost degradation and rapid carbon loss in tundra. Nat. Geosci. 2019, 12, 627–631. [Google Scholar] [CrossRef]
- Duncombe, J. How Financial Markets Can Grow More Climate Savvy. Available online: https://doi.org/10.1029/2020EO143124 (accessed on 22 April 2020).
- Lin, H. Three principles of soil change and pedogenesis in time and space. Soil Sci. Soc. Am. J. 2011, 75, 2049–2070. [Google Scholar] [CrossRef] [Green Version]
- Davidson, E.A. Dirt cheap soil. Nature 2007, 447, 777–778. [Google Scholar] [CrossRef] [Green Version]
- Lobry de Bruyn, L.A.; Abbey, J.A. Characterisation of farmers’ soil sense and the implications for on-farm monitoring of soil health. Aust. J. Exp. Agric. 2003, 43, 285–305. [Google Scholar] [CrossRef]
- Hoosbeek, M.R.; Amundson, R.G.; Bryant, R.B. Pedological modeling. In Handbook of Soil Science; Sumner, M.E., Ed.; CRC Press: Boca Raton, FL, USA, 2000; p. E-77. [Google Scholar]
- Yadav, G.S.; Lal, R.; Meena, R.S. Long-term effects of vehicular passages on soil carbon sequestration and carbon dioxide emission in a no-till corn-soybean rotation on a Crosby silt loam in Central Ohio, USA. J. Plant Nutr. Soil Sci. 2019, 182, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Parton, W.J.; Ojima, D.S.; Cole, C.V.; Schimel, D.S. A general model for soil organic matter dynamics: Sensitivity to litter chemistry, texture and management. In Quantative Modeling in Soil Forming Processes; Bryant, R.B., Arnold, R.W., Eds.; SSSA Special Publications: Madison, WI, USA, 1994; p. 39. [Google Scholar]
- Mikhailova, E.A.; Bryant, R.B.; DeGloria, S.D.; Post, C.J.; Vassenev, I.I. Modeling soil organic matter dynamics after conversion of native grassland to long-term continuous fallow using the CENTURY model. Ecol. Model. 2000, 132, 247–257. [Google Scholar] [CrossRef]
- Brown, T.C.; Bergstrom, J.C.; Loomis, J.B. Defining, valuing, and providing ecosystem goods and services. Nat. Resour. J. 2007, 47, 329–376. [Google Scholar]
- Mikhailova, E.A.; Post, C.J.; Schlautman, M.A.; Groshans, G.R.; Cope, M.P.; Zhang, L. A systems-based approach to ecosystem services valuation of various atmospheric calcium deposition flows. Resources 2019, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- Groshans, G.R.; Mikhailova, E.A.; Post, C.J.; Schlautman, M.A.; Cope, M.P.; Zhang, L. Ecosystem services assessment and valuation of atmospheric magnesium deposition. Geosciences 2019, 9, 331. [Google Scholar] [CrossRef] [Green Version]
- Mikhailova, E.A.; Post, G.C.; Cope, M.P.; Post, C.J.; Schlautman, M.A.; Zhang, L. Quantifying and mapping atmospheric potassium deposition for soil ecosystem services assessment in the United States. Front. Environ. Sci. 2019, 7. [Google Scholar] [CrossRef]
- Groshans, G.R.; Mikhailova, E.A.; Post, C.J.; Schlautman, M.A.; Zurqani, H.A.; Zhang, L. Assessing the value of soil inorganic carbon for ecosystem services in the contiguous United States based on liming replacement costs. Land 2018, 7, 149. [Google Scholar] [CrossRef] [Green Version]
- Mikhailova, E.A.; Groshans, G.R.; Post, C.J.; Schlautman, M.A.; Post, G.C. Valuation of soil organic carbon stocks in the contiguous United States based on the avoided social cost of carbon emissions. Resources 2019, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.F. Predators and prey: A new ecology of competition. Harv. Bus. Rev. 1993, 71, 75–86. [Google Scholar] [PubMed]
- Bartkowski, B.; Hansjürgens, B.; Möckel, S.; Bartke, S. Institutional economics of agricultural soil ecosystem services. Sustainability 2018, 10, 2447. [Google Scholar] [CrossRef] [Green Version]
- Nicolodi, M.; Gianello, C. Understanding soil as an open system and fertility as an emergent property of the soil system. Sustain. Agric. Res. 2015, 4, 94–105. [Google Scholar] [CrossRef]
- Guerry, A.D.; Polasky, S.; Lubchenco, J.; Chaplin-Kramer, R.; Daily, G.C.; Griffin, R.; Ruckelshaus, M.; Bateman, I.J.; Duraiappah, A.; Elmqvist, T.; et al. Natural capital and ecosystem services informing decisions: From promise to practice. Proc. Natl. Acad. Sci. USA 2015, 112, 7348–7355. [Google Scholar] [CrossRef] [Green Version]
- Gould, S.J. The Structure of Evolutionary Theory; The Belknap Press of Harvard University Press: Cambridge, MA, USA; London, UK, 2002. [Google Scholar]
- Gould, S.J. Punctuated Equilibrium; The Belknap Press of Harvard University Press: Cambridge, MA, USA; London, UK, 2007. [Google Scholar]
- Rajnoha, R.; Kádárová, J.; Sujová, A.; Kádár, G. Business information systems: Research study and methodological proposals for ERP implementation process improvement. Procedia Soc. Behav. Sci. 2014, 109, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Alvarado-Herrera, A.; Bigne, E.; Aldas-Manzano, J.; Curras-Perez, R. A scale for measuring consumer perceptions of corporate social responsibility following the sustainable development paradigm. J. Bus. Ethics 2017, 140, 243–262. [Google Scholar] [CrossRef]
- Robinson, D.A.; Jackson, B.M.; Clothier, B.E.; Dominati, E.J.; Marchant, S.C.; Cooper, D.M.; Bristow, K.L. Advances in soil ecosystem services: Concepts, models, and applications for Earth system life support. Vadose Zone J. 2013. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.R.; d’Arge, R.; de Groot, S.; Farber, M.; Grasso, B.; Hannon, K.; Limburg, S.; Naeem, R.V.; O’neill, J.; Paruelo, R.G.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
Organizational Hierarchy of Soil System | Framework for Ecosystem Services | |||||
---|---|---|---|---|---|---|
Degree of … | Ecosystem Services | |||||
Soil System (Scale) | Time | Computation (Qualitative or Quantitative) | Complexity (Mechanistic or Empirical) | Provisioning | Regulation and Maintenance | Cultural |
World | ||||||
i + 6 | x | x | x | x | x | x |
Continent | ||||||
i + 5 | x | x | x | x | x | x |
Region | ||||||
i + 4 | x | x | x | x | x | x |
Watershed | ||||||
i + 3 | x | x | x | x | x | x |
Catena | ||||||
i + 2 | x | x | x | x | x | x |
Polypedon | ||||||
i + 1 | x | x | x | x | x | x |
Pedon | ||||||
i | x | x | x | x | x | x |
Soil | ||||||
horizon | ||||||
i − 1 | x | x | x | x | x | x |
Soil | ||||||
structure | ||||||
i − 2 | x | x | x | x | x | - |
Basic | ||||||
structure | ||||||
i − 3 | x | x | x | x | x | - |
Molecular | ||||||
interaction | ||||||
i − 4 | x | x | x | x | x | - |
Biophysical Accounts (Science-Based) | Administrative Accounts (Boundary-Based) | Monetary Accounts | Benefit/Damage | Total Value |
---|---|---|---|---|
Soil extent: | Administrative extent: | Ecosystem good(s) and service(s): | Sector: | Types of value: |
Examples of monetary valuations based on soil properties and organizational hierarchy of soil systems | ||||
Examples of monetary valuations based on interaction of pedosphere and Earth’s other spheres and organizational hierarchy of soil systems | ||||
Organizational hierarchy of soil system (i − 4 to i + 6) | Administrative organizational hierarchy (i − 4 to i + 6) | Provisioning, regulation/maintenance, and cultural | Environment, agriculture, industry etc. | Market and non-market valuations |
Slight ←-------------- Degree of Weathering and Soil Development -------------→ Strong | |||||
---|---|---|---|---|---|
Slight Weathering | Intermediate Weathering | Strong Weathering | |||
Soil Order | Midpoint SIC Value per Area ($ m−2) | Soil Order | Midpoint SIC Value per Area ($ m−2) | Soil Order | Midpoint SIC Value per Area ($ m−2) |
Entisols | 0.46 | Aridisols | 1.52 | Spodosols | 0.06 |
Inceptisols | 0.49 | Vertisols | 2.22 | Ultisols | 0.00 |
Histosols | 0.23 | Alfisols | 0.41 | Oxisols | - |
Gelisols | - | Mollisols | 1.10 | ||
Andisols | 0.00 |
Slight ←------------------------------ Degree of Weathering and Soil Development ------------------→ Strong | |||||
---|---|---|---|---|---|
Slight Weathering | Intermediate Weathering | Strong Weathering | |||
State (Region) | Midpoint SIC Value per Area ($ m−2) | State (Region) | Midpoint SIC Value per Area ($ m−2) | State (Region) | Midpoint SIC Value per Area ($ m−2) |
Connecticut | 0.01 | Iowa | 1.12 | Alabama | 0.00 |
Delaware | 0.00 | Illinois | 0.72 | Florida | 0.06 |
Maryland | 0.00 | Indiana | 1.13 | Georgia | 0.01 |
Maine | 0.00 | Michigan | 1.17 | Kentucky | 0.01 |
New Hampshire | 0.00 | Minnesota | 1.35 | Mississippi | 0.03 |
New Jersey | 0.00 | Missouri | 0.11 | North Carolina | 0.00 |
New York | 0.12 | Ohio | 0.60 | South Carolina | 0.02 |
Pennsylvania | 0.00 | Wisconsin | 0.37 | Tennessee | 0.00 |
Rhode Island | 0.00 | (Midwest) | 0.82 | Virginia | 0.00 |
Vermont | 0.06 | (Southeast) | 0.01 | ||
West Virginia | 0.00 | ||||
(East) | 0.03 |
Earth’s Sphere(s) | Example (Valuation) | Type | Soil System (Scale) | Source(s) |
---|---|---|---|---|
Ecosystem Services: Provisioning, maintenance | ||||
Atmosphere, Hydrosphere, Anthroposphere | Atmospheric Ca2+ deposition (market, liming replacement costs) | Abiotc | i + 4 | [60] |
Atmospheric Mg2+ deposition (market, liming replacement costs) | Abiotc | i + 4 | [61] | |
Atmospheric K+ deposition (market, fertilizer replacement costs) | Abiotc | i + 4 | [62] | |
Lithosphere, Anthroposphere | Soil inorganic carbon (SIC)–2-m soil depth (market, liming replacement costs) | Abiotc | i + 4 | [15,17] |
Ecosystem Services: Regulation | ||||
Atmosphere, Hydrosphere, Anthroposphere | Atmospheric Ca2+ and Mg2+ deposition (avoided social costs of carbon dioxide emissions, SC-CO2) | Abiotc | i + 4 | [41] |
Lithosphere, Anthroposphere | Soil inorganic carbon (SIC)–2-m soil depth (avoided social costs of carbon dioxide emissions, SC-CO2) | Abiotc | i + 4 | [63] |
Biosphere, Anthroposphere | Soil organic carbon (SOC)–2-m soil depth (avoided social costs of carbon dioxide emissions, SC-CO2) | Biotic | i + 4 | [64] |
Biosphere, Lithosphere, Anthroposphere | Total soil carbon (TSC)–2-m soil depth (avoided social costs of carbon dioxide emissions, SC-CO2) | Biotic + Abiotic | i + 4 | [16] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailova, E.A.; Post, C.J.; Schlautman, M.A.; Post, G.C.; Zurqani, H.A. The Business Side of Ecosystem Services of Soil Systems. Earth 2020, 1, 15-34. https://doi.org/10.3390/earth1010002
Mikhailova EA, Post CJ, Schlautman MA, Post GC, Zurqani HA. The Business Side of Ecosystem Services of Soil Systems. Earth. 2020; 1(1):15-34. https://doi.org/10.3390/earth1010002
Chicago/Turabian StyleMikhailova, Elena A., Christopher J. Post, Mark A. Schlautman, Gregory C. Post, and Hamdi A. Zurqani. 2020. "The Business Side of Ecosystem Services of Soil Systems" Earth 1, no. 1: 15-34. https://doi.org/10.3390/earth1010002
APA StyleMikhailova, E. A., Post, C. J., Schlautman, M. A., Post, G. C., & Zurqani, H. A. (2020). The Business Side of Ecosystem Services of Soil Systems. Earth, 1(1), 15-34. https://doi.org/10.3390/earth1010002