Artificial Intelligence for Optimizing Solar Power Systems with Integrated Storage: A Critical Review of Techniques, Challenges, and Emerging Trends
Abstract
1. Introduction
2. Literature Review
2.1. Solar Power System
2.2. Energy Storage System (ESS)
- Electrochemical storage involves batteries like lithium-ion, lead-acid, sodium-sulfur, and flow batteries. These are popular because they can store a decent amount of energy and handle frequent charging and discharging well.
- Electrical storage makes use of capacitors, which store energy in electric fields. They’re especially useful when a quick response is needed, though they don’t hold energy for very long.
- Electromagnetic storage uses superconducting magnetic systems (SMES) that can store and release energy with almost no losses, but only under very cold, cryogenic conditions.
- Thermal storage captures and stores heat energy, often in substances like molten salt. This method is frequently used in CSP plants to store solar heat for later use.
- Mechanical storage includes things like flywheels, systems that compress air (CAES), and gravity-based setups. These rely on motion or pressure to hold and release energy.
2.3. Solar Power with Integrated Energy Storage System
2.4. Emerging Trends: Generative AI and Hybrid Metaheuristic Models
2.5. Challenges of AI Methods in PV-IBESS and Future Directions
2.5.1. Interpretability vs. Performance
2.5.2. Data Generalization
2.5.3. Hardware Constraints
2.5.4. Cybersecurity
2.5.5. Future Directions
2.6. Role of AI in Solar-ESS Optimisation
- I.
- Optimisation Algorithms
- II.
- Energy Forecasting
- III.
- Predictive Maintenance
- IV.
- Smart Microgrid Control
2.7. Comparative Summary of AI Techniques for Solar-BESS Optimisation
3. Materials and Methods
4. Results
4.1. Typical PV Faults and Anomalies
4.2. Machine Learning Applications
4.3. Deep Learning Applications
4.4. Fuzzy Logic Applications
4.5. Generative AI Application in Solar Power with IESS
4.6. AI Stack vs. Mature Methods; Case Analysis
5. Discussion
5.1. Model Trade-Offs: Accuracy vs. Interpretability
5.2. Data Limitations and Generalization Risks
5.3. Hardware Constraints and Real-Time Performance
5.4. Cybersecurity, Privacy, and Regulatory Barriers
5.5. Emerging Directions: Hybrid Intelligence and Co-Design
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| BESS | Battery Energy Storage System |
| ESS | Energy Storage System |
| IESS | Integrated Energy Storage System |
| ML | Machine Learning |
| DL | Deep Learning |
| PV | Photovoltaic |
| CSP | Concentrated Solar Power |
| DC | Direct Current |
| AC | Alternating Current |
| HTF | Heat Transfer Fluid |
| HESS | Hybrid Energy Storage System |
| EMS | Energy Management System |
| GAN | Generative Adversarial Network |
| XAI | Explainable Artificial Intelligence |
| SVM | Support Vector Machine |
| RF | Random Forest |
| KNN | K-Nearest Neighbours |
| LGBM | Light Gradient Boosting Machine |
| ANN | Artificial Neural Network |
References
- Russo, M.A.; Carvalho, D.; Martins, N.; Monteiro, A. Future perspectives for wind and solar electricity production under high-resolution climate change scenarios. J. Clean. Prod. 2023, 404, 136997. [Google Scholar] [CrossRef]
- Nassar, Y.F.; El-Khozondar, H.J.; Elnaggar, M.; El-Batta, F.F.; El-Khozondar, R.J.; Alsadi, S.Y. Renewable energy potential in the State of Palestine: Proposals for sustainability. Renew. Energy Focus 2024, 49, 100576. [Google Scholar] [CrossRef]
- Demirbas, A. Global renewable energy projections. Energy Sources Part B 2009, 4, 212–224. [Google Scholar] [CrossRef]
- Sengupta, M.; Habte, A.; Wilbert, S.; Gueymard, C.; Remund, J.; Lorenz, E.; van Sark, W.; Jensen, A.R. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2024. [Google Scholar]
- Anand, P.; Tejes, P.K.S.; Naik, B.K.; Niyas, H. Design analysis and performance prediction of packed bed latent heat storage system employing machine learning models. J. Energy Storage 2023, 72, 108690. [Google Scholar] [CrossRef]
- Nwaigwe, K.N.; Mutabilwa, P.; Dintwa, E. An overview of solar power (PV systems) integration into electricity grid. Mater. Sci. Energy Technol. 2019, 2, 629–633. [Google Scholar] [CrossRef]
- Alilou, M.; Azami, H.; Oshnoei, A.; Mohammadi-Ivatloo, B.; Teodorescu, R. Fractional-order control techniques for renewable energy and energy-storage-integrated power systems: A review. Fractal Fract. 2023, 7, 391. [Google Scholar] [CrossRef]
- Shoaei, M.; Noorollahi, Y.; Hajinezhad, A.; Moosavian, S.F. A review of the applications of artificial intelligence in renewable energy systems: An approach-based study. Energy Convers. Manag. 2024, 306, 118207. [Google Scholar] [CrossRef]
- Yousef, L.A.; Yousef, H.; Rocha-Meneses, L. Artificial intelligence for management of variable renewable energy systems: A review of current status and future directions. Energies 2023, 16, 8057. [Google Scholar] [CrossRef]
- Szczepaniuk, H.; Szczepaniuk, E.K. Applications of artificial intelligence algorithms in the energy sector. Energies 2023, 16, 347. [Google Scholar] [CrossRef]
- Razmjoo, A.; Ghazanfari, A.; Østergaard, P.A.; Jahangiri, M.; Sumper, A.; Ahmadzadeh, S.; Eslamipoor, R. Moving toward the expansion of energy storage systems in renewable energy systems—A techno-institutional investigation with artificial intelligence consideration. Sustainability 2024, 16, 9926. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; Albadry, O.A.; Mohamed, M.I.; El-Khozondar, H.; Nassar, Y.; Hafez, A.A. Charging systems/techniques of electric vehicle. Sol. Energy Sustain. Dev. J. 2024, 13, 18–44. [Google Scholar] [CrossRef]
- Qazi, S. Fundamentals of standalone photovoltaic systems. In Standalone Photovoltaic (PV) Systems for Disaster Relief and Remote Areas; Qazi, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 31–82. [Google Scholar]
- Nayar, C.V.; Islam, S.M.; Dehbonei, H.; Tan, K.; Sharma, H. Power electronics for renewable energy sources. In Alternative Energy in Power Electronics; Rashid, M.H., Ed.; Butterworth-Heinemann: Boston, MA, USA, 2011; pp. 1–79. [Google Scholar]
- Raghavendra, K.V.G.; Zeb, K.; Muthusamy, A.; Krishna, T.N.V.; Kumar, S.V.S.V.P.; Kim, D.-H.; Kim, M.-S.; Cho, H.-G.; Kim, H.-J. A comprehensive review of DC–DC converter topologies and modulation strategies with recent advances in solar photovoltaic systems. Electronics 2019, 9, 31. [Google Scholar] [CrossRef]
- Yousri, D.; Abd Elaziz, M.; Oliva, D.; Abualigah, L.; Al-qaness, M.A.A.; Ewees, A.A. Reliable applied objective for identifying simple and detailed photovoltaic models using modern metaheuristics: Comparative study. Energy Convers. Manag. 2020, 223, 113279. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Li, Q.; Lin, T.; Yu, Q.; Du, H.; Li, J.; Fu, X. Review of deep reinforcement learning and its application in modern renewable power system control. Energies 2023, 16, 4143. [Google Scholar] [CrossRef]
- Babu, T.M.; Chenchireddy, K.; Kumar, K.K.; Nehal, V.; Srihitha, S.; Vikas, M.R. Intelligent control strategies for grid-connected photovoltaic–wind hybrid energy systems using ANFIS. Int. J. Adv. Appl. Sci. 2024, 13, 497. [Google Scholar] [CrossRef]
- Sobczynski, D.; Pawlowski, P. Energy storage systems for renewable energy sources. In Proceedings of the Selected Issues of Electrical Engineering and Electronics (WZEE 2021), Rzeszow, Poland, 13–15 September 2021. [Google Scholar]
- Salvadori, F.; Junior, O.H.A.; de Campos, M.; Sausen, P.S.; da Silva, E.A.; Santos, A.Q.O.; de Oliveira, F.M. Energy storage applications in renewable energy systems. In Smart Grids—Renewable Energy, Power Electronics, Signal Processing and Communication Systems Applications; Springer: Cham, Switzerland, 2024; pp. 73–118. [Google Scholar]
- Alami, A.H.; Olabi, A.G.; Mdallal, A.; Rezk, A.; Radwan, A.; Rahman, S.M.A.; Shah, S.K.; Abdelkareem, M.A. Concentrating solar power (CSP) technologies: Status and analysis. Int. J. Thermofluids 2023, 18, 100340. [Google Scholar] [CrossRef]
- Pratikshya, T.; Abishek, K.; Pawan, B.; Aasma, B. A review of energy storage system. J. Phys. Conf. Ser. 2023, 2629, 012024. [Google Scholar]
- Kar, M.K.; Kanungo, S.; Dash, S.; Parida, R.N.R. Grid-connected solar panel with battery energy storage system. Int. J. Appl. Power Eng. 2024, 13, 223–233. [Google Scholar] [CrossRef]
- Zeng, Y.; Maswood, A.I.; Pou, J.; Zhang, X.; Li, Z.; Sun, C.; Mukherjee, S.; Gupta, A.K.; Dong, J. Active disturbance rejection control using artificial neural network for dual-active-bridge-based energy storage system. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 301–311. [Google Scholar] [CrossRef]
- Saikia, P.; Batbida, H.; Ugalde-Loo, C.E. An effective predictor of the dynamic operation of latent-heat thermal energy storage units based on a nonlinear autoregressive network with exogenous inputs. Appl. Energy 2024, 360, 122697. [Google Scholar] [CrossRef]
- Biagioni, D.; Zhang, X.; Adcock, C.; Sinner, M.; Graf, P.; King, J. Comparative analysis of grid-interactive building control algorithms: From model-based to learning-based approaches. Eng. Appl. Artif. Intell. 2024, 133, 108498. [Google Scholar] [CrossRef]
- Alves, G.H.; Guimarães, G.C.; Moura, F.A.M. Battery storage systems control strategies with intelligent algorithms in microgrids with dynamic pricing. Energies 2023, 16, 5262. [Google Scholar] [CrossRef]
- Valarmathi, K.; Seetha, J.; Krishnamoorthy, N.V.; Hema, M.; Ramkumar, G. An integrated energy storage framework with significant energy management and absorption mechanism for machine-learning-assisted electric-vehicle application. Sustain. Comput. Inform. Syst. 2024, 42, 100982. [Google Scholar] [CrossRef]
- Emamian, M.; Eskandari, A.; Aghaei, M.; Nedaei, A.; Sizkouhi, A.M.; Milimonfared, J. Cloud-computing and IoT-based intelligent monitoring system for photovoltaic plants using machine-learning techniques. Energies 2022, 15, 3014. [Google Scholar] [CrossRef]
- Narayanan, S.; Kumar, R.; Ramadass, S.; Ramasamy, J. Innovative hybrid approach for enhanced renewable energy generation forecasting using recurrent neural networks and generative adversarial networks. J. Electr. Eng. Technol. 2024, 9, 4847–4864. [Google Scholar] [CrossRef]
- Kodali, R.K.; John, J. Smart monitoring of solar panels using AWS. In Proceedings of the 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and Its Control (PARC 2020), Mathura, India, 28–29 February 2020; pp. 422–427. [Google Scholar]
- Paredes-Parra, J.M.; García-Sánchez, A.J.; Mateo-Aroca, A.; Molina-García, Á. An alternative IoT solution based on LoRa for PV power plants: Data monitoring and management. Energies 2019, 12, 881. [Google Scholar] [CrossRef]
- Al-Naib, A.M.I.; Mohammed, M.I. IoT-based real-time data acquisition of PV panel. In Proceedings of the 2023 International Conference on Engineering, Science and Advanced Technology (ICESAT 2023), Mosul, Iraq, 21–22 June 2023; pp. 169–173. [Google Scholar]
- Spanias, A.S. Solar energy management as an Internet of Things (IoT) application. In Proceedings of the 2017 8th International Conference on Information, Intelligence, Systems & Applications (IISA 2017), Larnaca, Cyprus, 27–30 August 2017; pp. 1–4. [Google Scholar]
- Shweta, R.; Sivagnanam, S.; Kumar, K.A. Fault detection and monitoring of solar photovoltaic panels using Internet of Things technology with fuzzy logic controller. Electr. Eng. Electromech. 2022, 6, 67–74. [Google Scholar] [CrossRef]
- Kekre, A.; Gawre, S.K. Solar photovoltaic remote monitoring system using IoT. In Proceedings of the 2017 International Conference on Recent Innovations in Signal Processing and Embedded Systems (RISE 2017), Bhopal, India, 27–29 October 2017; pp. 619–623. [Google Scholar]
- Adhya, S.; Saha, D.; Das, A.; Jana, J.; Saha, H. An IoT-based smart solar photovoltaic remote monitoring and control unit. In Proceedings of the 2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC 2016), Kolkata, India, 28–30 January 2016; pp. 432–436. [Google Scholar]
- Shakya, S. A self-monitoring and analysing system for solar power station using IoT and data-mining algorithms. J. Soft Comput. Paradig. 2021, 3, 96–109. [Google Scholar] [CrossRef]
- Suresh, M.; Kumar, R.A.; Raja, T.A.S.; Meenakumari, K.; Mahendran, K.; Pradeep, A. Fault detection and monitoring of solar PV panels using Internet of Things. Int. J. Ind. Eng. 2018, 2, 146–149. [Google Scholar] [CrossRef]
- Grataloup, A.; Jonas, S.; Meyer, A. A review of federated learning in renewable energy applications: Potential, challenges, and future directions. Energy AI 2024, 17, 100375. [Google Scholar] [CrossRef]
- Chen, X.; Huang, C.; Zhang, Y.; Wang, H. Privacy-preserving personalized federated learning for distributed photovoltaic disaggregation under statistical heterogeneity. IEEE Trans. Instrum. Meas. 2025, 74, 251. [Google Scholar] [CrossRef]
- Del Río, A.M.; Ramírez, I.S.; Márquez, F.P.G. Photovoltaic solar power plant maintenance management based on IoT and machine learning. In Proceedings of the 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT 2021), Zallaq, Bahrain, 29–30 September 2021; pp. 423–428. [Google Scholar]
- Kingsley-Amaehule, M.; Uhunmwangho, R.; Nwazor, N.; Okedu, K.E. Smart intelligent monitoring and maintenance management of photovoltaic systems. Int. J. Smart Grid 2022, 6, 110–122. [Google Scholar]
- Mellit, A.; Hamied, A.; Lughi, V.; Pavan, A.M. A low-cost monitoring and fault-detection system for stand-alone photovoltaic systems using IoT technique. In Proceedings of the 13th International Conference on IMACS TC1 Committee (ELECTRIMACS 2019), Salerno, Italy, 21–23 May 2019; pp. 349–358. [Google Scholar]
- Li, Y.; Lin, P.; Zhou, H.; Chen, Z.; Wu, L.; Cheng, S.; Su, F. On-line monitoring system of PV array based on Internet of Things technology. IOP Conf. Ser. Earth Environ. Sci. 2017, 93, 012078. [Google Scholar] [CrossRef]
- Xia, K.; Ni, J.; Ye, Y.; Xu, P.; Wang, Y. A real-time monitoring system based on ZigBee and 4G communications for photovoltaic generation. CSEE J. Power Energy Syst. 2020, 6, 52–63. [Google Scholar]
- Nalamwar, H.; Ivanov, M.A.; Baidali, S. Automated intelligent monitoring and controlling software system for solar panels. IOP Conf. Ser. Earth Environ. Sci. 2017, 803, 012107. [Google Scholar] [CrossRef]
- Hamied, A.; Boubidi, S.; Rouibah, N.; Chine, W.; Mellit, A. IoT-based smart photovoltaic arrays for remote sensing and fault identification. In Proceedings of the International Conference on Artificial Intelligence in Renewable Energetic Systems (IC-AIRES 2019), Taghit-Bechar, Algeria, 26–28 November 2019; pp. 478–486. [Google Scholar]
- Assaf, A.M.; Haron, H.; Abdull Hamed, H.N.; Ghaleb, F.A.; Dalam, M.E.; Elfadil-Eisa, T.A. Improving solar radiation forecasting utilizing data augmentation model, generative adversarial networks with a convolutional support vector machine (GAN-CSVR). Appl. Sci. 2023, 13, 12768. [Google Scholar] [CrossRef]
- Jailani, N.L.; Dhanasegaran, J.K.; Alkawsi, G.; Alkahtani, A.A.; Phing, C.C.; Baashar, Y.; Capretz, L.F.; Al-Shetwi, A.Q.; Tiong, S.K. Investigating the power of LSTM-based models in solar energy forecasting. Processes 2023, 11, 1382. [Google Scholar] [CrossRef]
- Priharti, W.; Rosmawati, A.F.K.; Wibawa, I.P.D. IoT-based photovoltaic monitoring system application. J. Phys. Conf. Ser. 2019, 1367, 012069. [Google Scholar] [CrossRef]
- Cheddadi, Y.; Cheddadi, H.; Cheddadi, F.; Errahimi, F.; Es-sbai, N. Design and implementation of an intelligent low-cost IoT solution for energy monitoring of photovoltaic stations. SN Appl. Sci. 2020, 2, 1165. [Google Scholar] [CrossRef]
- Ul Mehmood, M.; Ulasyar, A.; Ali, W.; Zeb, K.; Zad, H.S.; Uddin, W.; Kim, H.-J. A new cloud-based IoT solution for soiling ratio measurement of PV systems using artificial neural network. Energies 2023, 16, 996. [Google Scholar] [CrossRef]
- Adila, A.S.; Husam, A.; Husi, G. Towards the self-powered Internet of Things (IoT) by energy harvesting: Trends and technologies for green IoT. In Proceedings of the 2018 2nd International Symposium on Small-Scale Intelligent Manufacturing Systems (SIMS), Cavan, Ireland, 16–18 April 2018; pp. 1–5. [Google Scholar]
- Podder, K.; Roy, N.K.; Pota, H.R. MPPT methods for solar PV systems: A critical review based on tracking nature. IET Renew. Power Gener. 2019, 13, 1615–1632. [Google Scholar] [CrossRef]
- Rokonuzzaman, M.; Shakeri, M.; Hamid, F.A.; Mishu, M.K.; Pasupuleti, J.; Rahman, K.S.; Tiong, S.K.; Amin, N. IoT-enabled high-efficiency smart solar charge controller with maximum power point tracking—Design, hardware implementation and performance testing. Electronics 2020, 9, 1267. [Google Scholar] [CrossRef]
- Williams, K.; Qouneh, A. Internet of Things: Solar array tracker. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1057–1060. [Google Scholar]
- Ibrahim, O.; Aziz, M.J.A.; Ayop, R.; Dahiru, A.T.; Low, W.Y.; Sulaiman, M.H.; Amosa, T.I. Fuzzy-logic-based particle swarm optimisation for integrated energy management system considering battery storage degradation. Results Eng. 2024, 24, 102816. [Google Scholar] [CrossRef]
- Xia, K.; Li, Y.; Zhu, B. Improved photovoltaic MPPT algorithm based on ant colony optimisation and fuzzy logic under conditions of partial shading. IEEE Access 2024, 12, 44817–44825. [Google Scholar] [CrossRef]
- Basha, C.H.; Palati, M.; Dhanamjayulu, C.; Muyeen, S.M.; Venkatareddy, P. A novel design and implementation of hybrid MPPT controllers for solar PV systems under various partial shading conditions. Sci. Rep. 2024, 14, 1609. [Google Scholar] [CrossRef]
- Huang, B.; Wang, J. Applications of physics-informed neural networks in power systems—A review. IEEE Trans. Power Syst. 2022, 38, 572–588. [Google Scholar] [CrossRef]
- Aghamolaei, R. Recent advancements in applying machine learning in Power-to-X processes: A literature review. Sustainability 2024, 16, 9555. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Yan, P.; Li, X.; Zhou, G.; Yu, D. Operation optimisation of integrated energy system under a renewable-energy-dominated future scene considering both independence and benefit: A review. Energies 2021, 14, 1103. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, M.; Wang, K.; Wang, Y.; Huang, Y.; Xu, Z. Power sharing and storage-based regenerative braking energy utilisation for sectioning post in electrified railways. IEEE Trans. Transp. Electrific. 2023, 10, 2677–2688. [Google Scholar] [CrossRef]
- Deiana, A.M.; Tran, N.; Agar, J.; Blott, M.; Di Guglielmo, G.; Duarte, J.; Harris, P.; Hauck, S.; Liu, M.; Neubauer, M.S.; et al. Applications and techniques for fast machine learning in science. Front. Big Data 2022, 5, 787421. [Google Scholar] [CrossRef]
- Chetty, K.; Davids, Y.D.; Kanyane, M.; Madzivhandila, T.; Moosa, T.; Ndaba, L. Fostering a just energy transition: Lessons from South Africa’s renewable energy independent power producer procurement programme. S. Afr. J. Int. Aff. 2023, 30, 225–244. [Google Scholar] [CrossRef]
- Mantuano, C.; Omoyele, O.; Hoffmann, M.; Weinand, J.M.; Panella, M.; Stolten, D. Data imputation methods for intermittent renewable energy sources: Implications for energy system modeling. Energy Convers. Manag. 2025, 339, 119857. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, H.; Cao, Y.; Yang, F.; Wen, Y. Missing data imputation for solar yield prediction using temporal multi-modal variational auto-encoder. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual Event, China, 20–24 October 2021; pp. 2558–2566. [Google Scholar]
- Faraji Niri, M.; Aslansefat, K.; Haghi, S.; Hashemian, M.; Daub, R.; Marco, J. A review of the applications of explainable machine learning for lithium-ion batteries: From production to state and performance estimation. Energies 2023, 16, 6360. [Google Scholar] [CrossRef]
- Petrosian, O.; Zhang, Y. Solar power generation forecasting in smart cities and explanation based on explainable AI. Smart Cities 2024, 7, 3388–3411. [Google Scholar] [CrossRef]
- Öter, A.; Ersöz, B. Artificial Intelligence Assisted Solar Energy Forecasting by Explainability Approaches with LIME and SHAP. El-Cezeri Fen Mühendis. Derg. 2025, 12, 205–212. [Google Scholar] [CrossRef]
- Dou, X.; Cui, Z. Neural network-based forecasting and uncertainty analysis of new power generation capacity of electric energy. Energy Inform. 2025, 8, 85. [Google Scholar] [CrossRef]
- Hafeez, G. Electrical Energy Consumption Forecasting for Efficient Energy Management in Smart Grid. Ph.D. Thesis, COMSATS University Islamabad, Islamabad, Pakistan, 2021. [Google Scholar]
- Atiea, M.A.; Shaheen, A.M.; Alassaf, A.; Alsaleh, I. Enhanced solar power prediction models with integrating meteorological data toward sustainable energy forecasting. Int. J. Energy Res. 2024, 1, 8022398. [Google Scholar] [CrossRef]
- Wasay, A.; Raza, B.; Khan, Z.; Amir, M.; Rehman, B.U.; Shahid, H.; Bangash, K.U. Solar Radiation Prediction for Renewable Energy: A Machine Learning Perspective. Spectr. Eng. Manag. Sci. 2025, 3, 1048–1066. [Google Scholar]
- Williams, M.J.; Chang, C.K. The optimal integration of virtual power plants for the South African national grid based on an energy mix as per the Integrated Resource Plan 2019: A review. Energies 2024, 17, 6489. [Google Scholar] [CrossRef]
- Ye, Z.; Giani, A.; Elasser, A.; Mazumder, S.K.; Farnell, C.; Mantooth, H.A.; Kim, T.; Liu, J.; Chen, B.; Seo, G.-S.; et al. A review of cyber–physical security for photovoltaic systems. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 10, 4879–4901. [Google Scholar] [CrossRef]
- Parveen, R.; Mohammed, A.M.; Ravinder, K. IoT-based solar tracking system for efficient power generation. Int. J. Res. Anal. Rev. 2018, 5, 481–485. [Google Scholar]
- Shah, M.M.A.; Parvez, M.S.; Ahmed, A.; Hazari, M.R. IoT-based power monitoring of solar panel incorporating tracking system. In Proceedings of the 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI), Rajshahi, Bangladesh, 8–9 July 2021; pp. 1–4. [Google Scholar]
- Musleh, A.; Ahmed, J.; Ahmed, N.; Xu, H.; Chen, G.; Kerr, S.; Jha, S. Experimental cybersecurity evaluation of distributed solar inverters: Vulnerabilities and impacts on the Australian grid. IEEE Trans. Smart Grid 2024, 15, 5139–5150. [Google Scholar] [CrossRef]
- Ejiyi, C.J.; Cai, D.; Thomas, D.; Obiora, S.; Osei-Mensah, E.; Acen, C.; Eze, F.O.; Sam, F.; Zhang, Q.; Bamisile, O.O. Comprehensive review of artificial intelligence applications in renewable energy systems: Current implementations and emerging trends. J. Big Data 2025, 12, 169. [Google Scholar] [CrossRef]
- Adewoyin, M.A.; Adediwin, O.; Audu, A.J. Artificial intelligence and sustainable energy development: A review of applications, challenges, and future directions. Int. J. Multidiscip. Res. Growth Eval. 2025, 6, 196–203. [Google Scholar]
- Cavus, M. Advancing power systems with renewable energy and intelligent technologies: A comprehensive review on grid transformation and integration. Electronics 2025, 14, 1159. [Google Scholar] [CrossRef]
- Biswas, P.; Rashid, A.; Al Masum, A.; Al Nasim, M.A.; Ferdous, A.A.; Gupta, K.D.; Biswas, A. An extensive and methodical review of smart grids for sustainable energy management—Addressing challenges with AI, renewable energy integration, and leading-edge technologies. IEEE Access 2025, 1, 1. [Google Scholar] [CrossRef]
- Adebayo, D.H.; Ajiboye, J.A.; Okwor, U.D.; Muhammad, A.L.; Ugwuijem, C.D.; Agbo, E.K.; Stephen, V.I. Optimising energy storage for electric grids: Advances in hybrid technologies. Management 2025, 10, 11. [Google Scholar]
- Aslam, S.; Aung, P.P.; Rafsanjani, A.S.; Majeed, A.P.A. Machine learning applications in energy systems: Current trends, challenges, and research directions. Energy Inform. 2025, 8, 62. [Google Scholar]
- Worku, M.Y. Recent advances in energy storage systems for renewable source grid integration: A comprehensive review. Sustainability 2022, 14, 5985. [Google Scholar] [CrossRef]







| Technique | Algorithms | Use Cases | Strengths | Weaknesses | Practical Fit | References |
|---|---|---|---|---|---|---|
| ML | SVM, RF, LGBM | Forecasting, load prediction | Fast, interpretable, low-resource | Requires feature engineering, sensitive to noise | Urban microgrids, rural systems | [27,28,29,30,31,32] |
| DL | CNN, LSTM, RL | Short-term forecasting, anomaly detection | Handles complex patterns, high accuracy | Data- and compute-hungry, opaque | Data-rich, grid-scale environments | [29,32,33,34,35,36] |
| Fuzzy | Mamdani, Sugeno | MPPT control, adaptive BESS operation | Rule-based, explainable, robust to variability | Rule explosion, needs expert setup | Embedded controllers, smart homes | [37,38,39,40,41,42,43] |
| Generative AI | GAN, VAE | Data augmentation, design optimization | Enhances model robustness, assists configuration | Computationally heavy, limited field validation | Research-driven, simulation-focused | [29,35,40,41,42,44,45] |
| Study References | AI Model | Application | RMSE (%) | Training Time | Key Insight |
|---|---|---|---|---|---|
| [30,32,35] | LGBM | Microgrid solar forecasting | 6.21 | Moderate | Better than KNN (RMSE: 7.15), but more memory |
| [28,30,31,37] | Hybrid ANN-SVR | Grid-scale forecasting | 5.4 | Low | Faster training than ANN, better accuracy |
| [43,44,45] | CNN-RNN Ensemble | Irradiance prediction | 8.3 | High | <10% error for 1-h-ahead forecast |
| [27,28,29,40,41] | GAN | Synthetic weather data | N/A | Very High | 10,000+ samples with 92% realism |
| Function | Existing Method | AI Method | Representative Result (Literature) |
|---|---|---|---|
| 0–60 min PV forecasting | Persistence/Holt–Winters/ARIMA | CNN–LSTM/GRU/TFT (optionally with sky-imagers) | Deep learning consistently outperforms statistical baselines on short horizons, e.g., a GRU-TFT forecaster reported RMSE ≈ 5.2% on PV power, outperforming non-DL comparators; sky-image DL nowcasting reduces short-term uncertainty vs. persistence/statistical models. |
| MPPT & local control | P&O/fixed-gain PID | Fuzzy or hybrid (P&O-FLC/InC-FLC; neuro-fuzzy) | Fuzzy/hybrid MPPT achieves higher steady-state efficiency and faster convergence than P&O: reports include η ≈ 97.5–99.8% and ≈53 ms convergence, with reduced oscillation around MPP. |
| Fault/anomaly detection (PV side) | Threshold rules/clustering | VAE/autoencoder (temporal/conditional) | VAE/AE models trained on “normal” SCADA detect subtle multivariate deviations and outperform Isolation Forest/SVM baselines on real PV/ESS data, improving detection precision/recall. |
| Function | Existing Method | AI Method | Representative Result (Literature) |
|---|---|---|---|
| BESS dispatch/EMS | Rule-based/model-based MPC without learning | Deep reinforcement learning (DRL)–assisted EMS (SAC/DDQN/MA-DRL) | Learning-augmented EMS reduces operating cost and curtailment exposure vs. fixed heuristics; recent studies show cost reductions and loss/cycling reductions in microgrid simulations; DRL is particularly effective under price volatility and renewables uncertainty. |
| ESS anomaly/health (station level) | Fixed thresholds/supervised classifiers | Unsupervised VAE/AE (real ESS data) | In large-scale storage stations, VAE detection outperforms classical ML (Isolation Forest, SVM) and flags sub-threshold anomalies that rules miss, improving maintainability and safety. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Areola, R.I.; Adebiyi, A.A.; Moloi, K. Artificial Intelligence for Optimizing Solar Power Systems with Integrated Storage: A Critical Review of Techniques, Challenges, and Emerging Trends. Electricity 2025, 6, 60. https://doi.org/10.3390/electricity6040060
Areola RI, Adebiyi AA, Moloi K. Artificial Intelligence for Optimizing Solar Power Systems with Integrated Storage: A Critical Review of Techniques, Challenges, and Emerging Trends. Electricity. 2025; 6(4):60. https://doi.org/10.3390/electricity6040060
Chicago/Turabian StyleAreola, Raphael I., Abayomi A. Adebiyi, and Katleho Moloi. 2025. "Artificial Intelligence for Optimizing Solar Power Systems with Integrated Storage: A Critical Review of Techniques, Challenges, and Emerging Trends" Electricity 6, no. 4: 60. https://doi.org/10.3390/electricity6040060
APA StyleAreola, R. I., Adebiyi, A. A., & Moloi, K. (2025). Artificial Intelligence for Optimizing Solar Power Systems with Integrated Storage: A Critical Review of Techniques, Challenges, and Emerging Trends. Electricity, 6(4), 60. https://doi.org/10.3390/electricity6040060

