Transient Analysis of Fault-Induced Delayed Voltage Recovery by Mathematical Modeling of a Three-Phase Induction Motor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composite Load Model WECC
- Motor A: Single-cage induction motor, represents motors with low inertia driving constant torque loads.
- Motor B: Deep squirrel-cage induction motor, represents motors with high inertia driving variable torque loads
- Motor C: Double squirrel-cage induction motor, represents motors with low inertia driving variable torque loads.
- Motor D: Single-phase motor, represents heating, ventilation, and air conditioning systems.
2.2. Mathematical Model of the Three-Phase Induction Motor
2.3. Simulink Model Implementation
2.4. Validation of the Implemented Model
2.4.1. Parameter Variation
2.4.2. Motor Load Variation
2.4.3. Variation in Voltage Disturbance Magnitude
3. Results and Discussion
3.1. Simulation of Motor Start-Up
3.2. Validation of the Implemented Model
3.2.1. Parameter Variation
Validation of Motor A
Validation of Motor B
Validation of Motor C
3.2.2. Motor Load Variation
3.2.3. Variation in Voltage Disturbance Magnitude
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FIDVR | Fault-induced delayed voltage recovery. |
GE PSLE | General electric power system load flow. |
PSSE | Power system simulation for engineering. |
Quasi-AC | The simple steady-state model of the motor. |
WECC | Western Electricity Coordinating Council. |
ZIP | Polynomial model of constant impedance, constant current, and constant power. |
ZIP + IM | ZIP model in parallel to induction motor. |
Appendix A. Script MATLAB. Determination of (, , , , and )
Listing A1. MATLAB code for the determination of , , and |
References
- Tan, B.; Zhao, J.; Duan, N. Amortized Bayesian Parameter Estimation Approach for WECC Composite Load Model. IEEE Trans. Power Syst. 2023, 39, 1517–1529. [Google Scholar] [CrossRef]
- Taylor, C.W. Voltage Stability. Power System Voltage; Mcgraw-Hill: New York, NY, USA, 1994; pp. 27–32. [Google Scholar]
- Lee, Y.; Song, H. Multi-Phase Under Voltage Load Shedding Scheme for Preventing Delayed Voltage Recovery by Induction Motor Power Consumption Characteristics. Appl. Sci. 2018, 8, 1115. [Google Scholar] [CrossRef]
- Stewart, K.; Taylor, G.A.; Halpin, S.M. Motor Load Models for Fault-Induced Delayed Voltage Recovery Studies in Bulk Transmission Systems. In Proceedings of the 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe, Madrid, Spain, 6–9 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Khazeiynasab, S.R.; Zhao, J.; Duan, N. WECC Composite Load Model Parameter Identification Using Deep Learning Approach. In Proceedings of the 2022 IEEE Power & Energy Society General Meeting (PESGM), Denver, CO, USA, 17–21 July 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Kundur, P. Power System Stability and Control; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- McCormick, K. Distribution Level Composite Load Modeling. Master’s Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 2023. [Google Scholar]
- Liao, W.; Zhang, Y.; Zhou, R. Analytical method to calculate transient responses of induction motor load. IET Gener. Transm. Distrib. 2020, 14, 3221–3229. [Google Scholar] [CrossRef]
- Rahmani, S.; Rezaei-Zare, A. Prediction of System Voltage Recovery due to Single Phase Induction Motor Stall Using Machine Learning Techniques. In Proceedings of the 2019 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Athens, Greece, 22–23 April 2019; Volume 1, pp. 128–134. [Google Scholar] [CrossRef]
- Zhang, K.; Zhu, H.; Guo, S. Dependency Analysis and Improved Parameter Estimation for Dynamic Composite Load Modeling. IEEE Trans. Power Syst. 2017, 32, 3287–3297. [Google Scholar] [CrossRef]
- IEEE Guide for Load Modeling and Simulations for Power Systems; The Institute of Electrical and Electronics Engineers, Inc.: New York, NY, USA, 2022; Available online: https://ieeexplore.ieee.org/document/9905546 (accessed on 9 February 2025).
- Yamashita, K.; Martinez Villanueva, S.; Djokic, S.; Ma, J.; Gaikwad, A.; Milanović, J. CIGRE SC C4 2012 Hakodate Colloquium Overview of Existing Methodologies for Load Model Development. In Proceedings of the Coloquio CIGRE SC C4 en Japón, Hakodate, Japan, 11–12 October 2012. [Google Scholar]
- Kosterev, D.N.; Taylor, C.W.; Mittelstadt, W.A. Model validation for the August 10, 1996 WSCC system outage. IEEE Trans. Power Syst. 1999, 14, 967–979. [Google Scholar] [CrossRef]
- Ma, Z.; Cui, B.; Wang, Z.; Zhao, D. Parameter Reduction of Composite Load Model Using Active Subspace Method. IEEE Trans. Power Syst. 2021, 36, 5441–5452. [Google Scholar] [CrossRef]
- Xie, J.; Ma, Z.; Dehghanpour, K.; Wang, Z.; Wang, Y.; Diao, R.; Shi, D. Imitation and Transfer Q-Learning-Based Parameter Identification for Composite Load Modeling. IEEE Trans. Smart Grid 2021, 12, 1674–1684. [Google Scholar] [CrossRef]
- Arif, A.; Wang, Z.; Wang, J.; Mather, B.; Bashualdo, H.; Zhao, D. Load Modeling—A Review. IEEE Trans. Smart Grid 2018, 9, 5986–5999. [Google Scholar] [CrossRef]
- Wang, Z.; Bu, F.; Ma, Z.; Xiang, Y. Data-Driven and Machine Learning-Based Load Modeling. 2021. Available online: https://documents.pserc.wisc.edu/documents/publications/reports/2021_reports/S_84G_Final_Report.pdf (accessed on 9 February 2025).
- Ma, Z.; Wang, Z.; Wang, Y.; Diao, R.; Shi, D. Mathematical Representation of WECC Composite Load Model. J. Mod. Power Syst. Clean Energy 2020, 8, 1015–1023. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, R.; Palmer, B.J.; Liu, Y.; Jin, S.; Diao, R.; Chen, Y.; Zhang, Y. A generic modeling and development approach for WECC composite load model. Electr. Power Syst. Res. 2019, 172, 1–10. [Google Scholar] [CrossRef]
- Bu, F.; Ma, Z.; Yuan, Y.; Wang, Z. WECC Composite Load Model Parameter Identification Using Evolutionary Deep Reinforcement Learning. IEEE Trans. Smart Grid 2020, 11, 5407–5417. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Huang, Q.; Kundu, S.; Tang, Y.; James, D.; Etingov, P.; Mitra, B.; Chassin, D.P. Impact of Building-Level Motor Protection on Power System Transient Behaviors. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018; pp. 1–5. [Google Scholar] [CrossRef]
- WECC. WECC Composite Load Model Specification; WECC: Salt Lake City, UT, USA, 2021. [Google Scholar]
- Aree, P. Third-Order Polar-Coordinate Model of Induction Motor Load. In Proceedings of the 2023 9th International Conference on Engineering, Applied Sciences, and Technology (ICEAST), Vientiane, Laos, 1–4 June 2023; pp. 140–143. [Google Scholar] [CrossRef]
- Chapman, S.J. Maquinas Electricas, 5th ed.; Mc Graw Hill: New York, NY, USA, 2012; pp. 231–299. [Google Scholar]
- Krause, T.R.K.P.C. Introduction to Modern Analysis of Electric Machines and Drive; Wiley-IEEE Press: Hoboken, NJ, USA, 2022. [Google Scholar]
- Chen, Y.; Wu, H.; Shen, Y.; Meng, X.; Ju, P. A Fast Parameter Identification Method for Composite Load Model Based on Jumping and Steady-State Points of Measured Data. IEEE Access 2022, 10, 97665–97676. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, R.; Palmer, B.J.; Liu, Y.; Jin, S.; Diao, R.; Chen, Y.; Zhang, Y. A Reference Implementation of WECC Composite Load Model in Matlab and GridPACK. arXiv 2017, arXiv:1708.00939. [Google Scholar] [CrossRef]
- Sharawy, M.; Shaltout, A.A.; Youssef, O.E.S.M.; Al-Ahmar, M.A.; Abdel-Rahim, N.; Sutikno, T. Maximum allowable hp rating of 3-phase induction motor fed through a stand-alone constant V/f controlled DFIG via RSC. Bull. Electr. Eng. Inform. 2024, 13, 832–844. [Google Scholar] [CrossRef]
- Rasheduzzaman, M.; Mueller, J.A.; Kimball, J.W. An Accurate Small-Signal Model of Inverter- Dominated Islanded Microgrids Using dq Reference Frame. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 1070–1080. [Google Scholar] [CrossRef]
- NERC. Technical Reference Document Dynamic Load Modeling; NERC: Atlanta, GA, USA, 2016. [Google Scholar]
- Hernández, G.; Jonathan, M.U.P.J.; Martínez, O.V. Determinación de la Constante de Inercia de Máquinas Síncronas de Laboratorio. 2010. Available online: https://tesis.ipn.mx/jspui/bitstream/123456789/8554/1/90.pdf (accessed on 9 February 2025).
- Belbali, A.; Makhloufi, S.; Kadri, A.; Abdallah, L.; Seddik, Z. Mathematical Modeling of a Three-Phase Induction Motor; IntechOpen: London, UK, 2023; Chapter 7. [Google Scholar] [CrossRef]
- Sengamalai, U.; Anbazhagan, G.; Thentral, T.M.T.; Vishnuram, P.; Khurshaid, T.; Kamel, S. Three Phase Induction Motor Drive: A Systematic Review on Dynamic Modeling, Parameter Estimation, and Control Schemes. Energies 2022, 15, 8260. [Google Scholar] [CrossRef]
Parameters | |
---|---|
Mtyp | Motor type. |
Lfm | Load factor [p.u.]. |
Ra | Armature resistance [p.u.]. |
Ls | Synchronous reactance [p.u.]. |
Lp | Transient reactance [p.u.]. |
Lpp | Subtransient reactance [p.u.]. |
Tp0 | Open-circuit transient time constant [s]. |
Tpp0 | Open-circuit subtransient time constant [s]. |
H | Inertia constant [s]. |
Etrq | Mechanical torque with exponential speed. |
Parameter | Motor A | Motor B | Motor C |
---|---|---|---|
0.04 p.u. | 0.03 p.u. | 0.03 p.u. | |
1.8 p.u. | 1.8 p.u. | 1.8 p.u. | |
0.1 p.u. | 0.16 p.u. | 0.16 p.u. | |
0.083 p.u. | 0.12 p.u. | 0.12 p.u. | |
0.092 s | 0.1 s | 0.1 s | |
0.002 s | 0.0026 s | 0.0026 s | |
H | 0.05 s | 1 s | 0.1 s |
A | 0 | 0 | 0 |
B | 0 | 0 | 0 |
C | 0 | 0 | 0 |
D | 1 | 1 | 1 |
0 | 2 | 2 | |
120 rad/s | 120 rad/s | 120 rad/s |
J | |||||
---|---|---|---|---|---|
0.087 | 0.302 | 13.08 | 0.302 | 0.228 | 1.662 kg·m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loaiza-Estrada, S.; Mesa-Beleño, J.P.; Lemmel-Vélez, K.; Estrada-Mesa, S.A.; Valencia-Hernandez, C.A.; Velasco-Méndez, J.R.; Monsalve-Cadavid, M.A. Transient Analysis of Fault-Induced Delayed Voltage Recovery by Mathematical Modeling of a Three-Phase Induction Motor. Electricity 2025, 6, 8. https://doi.org/10.3390/electricity6010008
Loaiza-Estrada S, Mesa-Beleño JP, Lemmel-Vélez K, Estrada-Mesa SA, Valencia-Hernandez CA, Velasco-Méndez JR, Monsalve-Cadavid MA. Transient Analysis of Fault-Induced Delayed Voltage Recovery by Mathematical Modeling of a Three-Phase Induction Motor. Electricity. 2025; 6(1):8. https://doi.org/10.3390/electricity6010008
Chicago/Turabian StyleLoaiza-Estrada, Sebastian, Juan P. Mesa-Beleño, Karen Lemmel-Vélez, Sergio A. Estrada-Mesa, Carlos A. Valencia-Hernandez, Jose R. Velasco-Méndez, and Marco A. Monsalve-Cadavid. 2025. "Transient Analysis of Fault-Induced Delayed Voltage Recovery by Mathematical Modeling of a Three-Phase Induction Motor" Electricity 6, no. 1: 8. https://doi.org/10.3390/electricity6010008
APA StyleLoaiza-Estrada, S., Mesa-Beleño, J. P., Lemmel-Vélez, K., Estrada-Mesa, S. A., Valencia-Hernandez, C. A., Velasco-Méndez, J. R., & Monsalve-Cadavid, M. A. (2025). Transient Analysis of Fault-Induced Delayed Voltage Recovery by Mathematical Modeling of a Three-Phase Induction Motor. Electricity, 6(1), 8. https://doi.org/10.3390/electricity6010008