μPMU-Based Temporal Decoupling of Parameter and Measurement Gross Error Processing in DSSE
Abstract
:1. Introduction
- The decoupling of gross error analysis in measurements and parameters in two different time scales: a slow time scale for processing gross errors in measurements and a fast time scale for gross error analysis in parameters due to operation of VVC;
- The use of unsynchronized and linearized SCADA measurements with load model-based temporal update of uncertainty combined with PMU measurements for DSSE.
2. PMU-Enhanced DSSE Gross Error Analysis
3. Non-Linear State Estimation
4. Linear State Estimation
4.1. Linearization of Unsynchronized Measurements
4.2. Load Model as an Ornstein–Uhlenbeck Stochastic Process
4.3. Load Dynamics-Induced Measurement Uncertainty
4.4. Derivation of LSE: Maximum Likelihood Estimation
4.5. Analysis of Parameter Errors Due to Switching Events
4.6. Synthetic Measurements
5. Numerical Tests
Parameter Error Processing
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sexauer, J.; Javanbakht, P.; Mohagheghi, S. Phasor measurement units for the distribution grid: Necessity and benefits. In Proceedings of the 2013 IEEE PES Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 24–27 February 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Paolone, M.; Borghetti, A.; Nucci, C.A. A synchrophasor estimation algorithm for the monitoring of active distribution networks in steady state and transient conditions. In Proceedings of the PSCC, Stockholm, Sweden, 22–26 August 2011. [Google Scholar]
- Caldarola, F.; Pantano, P.; Bilotta, E. Computation of supertrack functions for Chua’s oscillator and for Chua’s circuit with memristor. Commun. Nonlinear Sci. Numer. Simul. 2021, 94, 105568. [Google Scholar] [CrossRef]
- Abdelmalak, M.; Benidris, M.; Livani, H. A Polynomial Chaos-based Approach to Quantify Uncertainty of Solar Energy in Electric Power Distribution Systems. In Proceedings of the 2020 IEEE/PES Transmission and Distribution Conference and Exposition (T D), Chicago, IL, USA, 12–15 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Chen, J.; Dong, Y.; Zhang, H. Distribution system state estimation: A survey of some relevant work. In Proceedings of the 35th Chinese Control Conference, Chengdu, China, 27–29 July 2016; pp. 9985–9989. [Google Scholar] [CrossRef]
- Gómez-Expósito, A.; Gómez-Quiles, C.; Džafić, I. State Estimation in Two Time Scales for Smart Distribution Systems. IEEE Trans. Smart Grid 2015, 6, 421–430. [Google Scholar] [CrossRef]
- Clements, K.A. The impact of pseudo-measurements on state estimator accuracy. In Proceedings of the IEEE PES General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Bretas, A.S.; Bretas, N.G.; Carvalho, B.E. Further contributions to smart grids cyber-physical security as a malicious data attack: Proof and properties of the parameter error spreading out to the measurements and a relaxed correction model. Int. J. Electr. Power Energy Syst. 2019, 104, 43–51. [Google Scholar] [CrossRef]
- Stewart, E.; Stadler, M.; Roberts, C.; Reilly, J.; Arnold, D.; Joo, J.Y. Data driven approach for monitoring, protection and control of distribution system assets using micro-PMU technology. In Proceedings of the 24th CIRED, Glasgow, Scotland, 12–15 June 2017; pp. 1–5. [Google Scholar]
- Shahsavari, A.; Farajollahi, M.; Stewart, E.; von Meier, A.; Alvarez, L.; Cortez, E.; Mohsenian-Rad, H. A data-driven analysis of capacitor bank operation at a distribution feeder using micro-PMU data. In Proceedings of the IEEE PES ISGT, Torino, Italy, 26–29 September 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Alimardani, A.; Therrien, F.; Atanackovic, D.; Jatskevich, J.; Vaahedi, E. Distribution System State Estimation Based on Nonsynchronized Smart Meters. IEEE Trans. Smart Grid 2015, 6, 2919–2928. [Google Scholar] [CrossRef]
- Farajollahi, M.; Shahsavari, A.; Mohsenian-Rad, H. Tracking State Estimation in Distribution Networks Using Distribution-level Synchrophasor Data. In Proceedings of the IEEE PES General Meeting, Portland, OR, USA, 5–9 August 2018; pp. 1–5. [Google Scholar]
- Sarri, S.; Paolone, M.; Cherkaoui, R.; Borghetti, A.; Napolitano, F.; Nucci, C.A. State estimation of Active Distribution Networks: Comparison between WLS and iterated kalman-filter algorithm integrating PMUs. In Proceedings of the 2012 ISGT Europe, Berlin, Germany, 14–17 October 2012; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Schneider, K.; Nieplocha, J. Feasibility studies of applying Kalman Filter techniques to power system dynamic state estimation. In Proceedings of the IPEC, Singapore, 3–6 December 2007; pp. 376–382. [Google Scholar]
- Zhao, J.; Netto, M.; Mili, L. A Robust Iterated Extended Kalman Filter for Power System Dynamic State Estimation. IEEE Trans. Power Syst. 2017, 32, 3205–3216. [Google Scholar] [CrossRef]
- Ruben, C.; Dhulipala, S.C.; Bretas, A.S.; Guan, Y.; Bretas, N.G. Multi-objective MILP model for PMU allocation considering enhanced gross error detection: A weighted goal programming framework. Electr. Power Syst. Res. 2020, 182, 106235. [Google Scholar] [CrossRef]
- Power Standards Lab. Synchrophasors for Distribution, Microgrids: PQube 3 MicroPMU. Technical Report. Available online: http://www.jsdata.co.kr/down/MicroPMUCat.pdf (accessed on 29 September 2021).
- Wang, J.; Lu, X.; Chen, C. Guidelines for Implementing Advanced Distribution Management Systems: Requirements for DMS Integration with DERMS and Microgrids; Technical report; Argonne National Lab.: Lemont, IL, USA, 2015. [Google Scholar]
- Samarakoon, K.; Wu, J.; Ekanayake, J.; Jenkins, N. Use of delayed smart meter measurements for distribution state estimation. In Proceedings of the IEEE PES General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, H.; Schulz, N. A load modelling algorithm for distribution system state estimation. In Proceedings of the 2001 IEEE/PES Transmission and Distribution Conference and Exposition. Developing New Perspectives (Cat. No.01CH37294), Atlanta, GA, USA, 2 November 2001; Volume 1, pp. 102–105. [Google Scholar]
- Bretas, N.G.; Piereti, S.A.; Bretas, A.S.; Martins, A.C.P. A Geometrical View for Multiple Gross Errors Detection, Identification, and Correction in Power System State Estimation. IEEE Trans. Power Syst. 2013, 28, 2128–2135. [Google Scholar] [CrossRef]
- Bretas, A.S.; Bretas, N.G.; London, J.B.; Carvalho, B.E. Cyber-Physical Power Systems State Estimation; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Chakrabarti, S.; Kyriakides, E.; Ledwich, G.; Ghosh, A. Inclusion of PMU current phasor measurements in a power system state estimator. IET Gener. Transm. Distrib. 2010, 4, 1104–1115. [Google Scholar] [CrossRef]
- Bretas, N.G.; Bretas, A.S.; Piereti, S.A. Innovation concept for measurement gross error detection and identification in power system state estimation. IET Gener. Transm. Distrib. 2011, 5, 603–608. [Google Scholar] [CrossRef] [Green Version]
- Bretas, N.G.; Bretas, A.S.; Martins, A.C.P. Convergence Property of the Measurement Gross Error Correction in Power System State Estimation, Using Geometrical Background. IEEE Trans. Power Syst. 2013, 28, 3729–3736. [Google Scholar] [CrossRef]
- Bretas, A.; Bretas, N.; Braunstein, S.; Rossoni, A.; Trevizan, R. Multiple gross errors detection, identification and correction in three-phase distribution systems WLS state estimation: A per-phase measurement error approach. Electr. Power Syst. Res. 2017, 151, 174–185. [Google Scholar] [CrossRef]
- Lu, C.N.; Teng, J.H.; Liu, W.E. Distribution system state estimation. IEEE Trans. Power Syst. 1995, 10, 229–240. [Google Scholar] [CrossRef]
- Baran, M.E.; Kelley, A.W. A branch-current-based state estimation method for distribution systems. IEEE Trans. Power Syst. 1995, 10, 483–491. [Google Scholar] [CrossRef]
- Perninge, M.; Knazkins, V.; Amelin, M.; Soder, L. Risk Estimation of Critical Time to Voltage Instability Induced by Saddle-Node Bifurcation. IEEE Trans. Power Syst. 2010, 25, 1600–1610. [Google Scholar] [CrossRef]
- Roberts, C.; Stewart, E.M.; Milano, F. Validation of the Ornstein-Uhlenbeck process for load modeling based on μPMU measurements. In Proceedings of the PSCC, Genoa, Italy, 20–24 June 2016; pp. 1–7. [Google Scholar] [CrossRef] [Green Version]
- Arató, M.; Baran, S.; Ispány, M. Functionals of complex Ornstein-Uhlenbeck processes. Comput. Math. Appl. 1999, 37, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bibbona, E.; Panfilo, G.; Tavella, P. The Ornstein-Uhlenbeck process as a model of a low pass filtered white noise. Metrologia 2008, 45, S117. [Google Scholar] [CrossRef]
- Wooding, R.A. The Multivariate Distribution of Complex Normal Variables. Biometrika 1956, 43, 212–215. [Google Scholar] [CrossRef]
- Bretas, A.S.; Rossoni, A.; Trevizan, R.D.; Bretas, N.G. Distribution networks nontechnical power loss estimation: A hybrid data-driven physics model-based framework. Electr. Power Syst. Res. 2020, 186, 106397. [Google Scholar] [CrossRef]
- Dhulipala, S.C.; Ruben, C.; Bretas, A.; Bretas, N. Improvement in Vulnerability and Error Analysis: A Synthetic Measurement Approach. In Proceedings of the 2019 IEEE Power Energy Society General Meeting, Atlanta, GA, USA, 4–8 August 2019; pp. 1–5. [Google Scholar]
- Kersting, W.H. Distribution System Modeling and Analysis; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trevizan, R.D.; Ruben, C.; Rossoni, A.; Dhulipala, S.C.; Bretas, A.; Bretas, N.G. μPMU-Based Temporal Decoupling of Parameter and Measurement Gross Error Processing in DSSE. Electricity 2021, 2, 423-438. https://doi.org/10.3390/electricity2040025
Trevizan RD, Ruben C, Rossoni A, Dhulipala SC, Bretas A, Bretas NG. μPMU-Based Temporal Decoupling of Parameter and Measurement Gross Error Processing in DSSE. Electricity. 2021; 2(4):423-438. https://doi.org/10.3390/electricity2040025
Chicago/Turabian StyleTrevizan, Rodrigo D., Cody Ruben, Aquiles Rossoni, Surya C. Dhulipala, Arturo Bretas, and Newton G. Bretas. 2021. "μPMU-Based Temporal Decoupling of Parameter and Measurement Gross Error Processing in DSSE" Electricity 2, no. 4: 423-438. https://doi.org/10.3390/electricity2040025
APA StyleTrevizan, R. D., Ruben, C., Rossoni, A., Dhulipala, S. C., Bretas, A., & Bretas, N. G. (2021). μPMU-Based Temporal Decoupling of Parameter and Measurement Gross Error Processing in DSSE. Electricity, 2(4), 423-438. https://doi.org/10.3390/electricity2040025