Diabase Mud-Based Geopolymer Paste: Formulation and Properties †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Compressive Strength Test
3. Results and Discussion
3.1. Effect of NaOH Concentration
3.2. Effect of Na2SiO3 to NaOH Ratio
3.3. Effect of Diabase Mud on Compressive Strength
4. Conclusions
- The ratio of Na2SiO3 to NaOH by a mass equivalent of 50:50 led to an increase in the compressive strength of the relevant formulation, compared to the other ratios investigated.
- The compressive strength is not proportional to an increase in the NaOH concentration for values higher than 8 M.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luhar, S.; Nicolaides, D.; Luhar, I. Fire Resistance Behaviour of Geopolymer Concrete: An Overview. Buildings 2021, 11, 82. [Google Scholar] [CrossRef]
- Luhar, S.; Luhar, I.; Nicolaides, D.; Gupta, R. Durability Performance Evaluation of Rubberized Geopolymer Concrete. Sustainability 2021, 13, 5969. [Google Scholar] [CrossRef]
- Luhar, I.; Luhar, S.; Abdullah, M.M.A.B.; Nabiałek, M.; Sandu, A.V.; Szmidla, J.; Jurczyńska, A.; Razak, R.A.; Aziz, I.H.A.; Jamil, N.H.; et al. Assessment of the Suitability of Ceramic Waste in Geopolymer Composites: An Appraisal. Materials 2021, 14, 3279. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Y.; Sun, Y.; Tingley, D.D.; Zhang, Y. Life cycle sustainability assessment of fly ash concrete structures. Renew. Sustain. Energy Rev. 2017, 80, 1162–1174. [Google Scholar] [CrossRef]
- Luhar, S.; Suntharalingam, T.; Navaratnam, S.; Luhar, I.; Thamboo, J.; Poologanathan, K.; Gatheeshgar, P. Sustainable and Renewable Bio-Based Natural Fibres and Its Application for 3D Printed Concrete: A Review. Sustainability 2020, 12, 10485. [Google Scholar] [CrossRef]
- Luhar, S.; Luhar, I.; Shaikh, F.U.A. Review on Performance Evaluation of Autonomous Healing of Geopolymer Composites. Infrastructures 2021, 6, 94. [Google Scholar] [CrossRef]
- Williamson, T.; Juenger, M.C.G. The role of activating solution concentration on alkali–silica reaction in alkali-activated fly ash concrete. Cem. Concr. Res. 2016, 83, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Douglas, E.; Bilodeau, A.; Malhotra, V.M. Properties and durability of alkali activated slag concrete. Mater. J. 1992, 89, 509–516. [Google Scholar]
- Roy, D.M.; Jiang, W.; Silsbee, M.R. Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties. Cem. Concr. Res. 2000, 30, 1879–1884. [Google Scholar] [CrossRef]
- Lee, N.K.; Jang, J.G.; Lee, H.K. Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cem. Concr. Compos. 2014, 53, 239–248. [Google Scholar] [CrossRef]
- Kupaei, R.H.; Alengaram, U.J.; Jumaat, M.Z. The effect of different parameters on the development of compressive strength of oil palm shell geopolymer concrete. Sci. World J. 2014, 2014, 898536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patankar, S.V.; Ghugal, Y.M.; Jamkar, S.S. Effect of concentration of sodium hydroxide and degree of heat curing on fly ash-based geopolymer mortar. Indian J. Mater. Sci. 2014, 2014, 938789. [Google Scholar] [CrossRef]
- Yahya, Z.; Abdullah, M.M.A.B.; Hussin, K.; Ismail, K.N.; Razak, R.A.; Sandu, A.V. Effect of solids-to-liquids, Na2SiO3-to-NaOH and curing temperature on the palm oil boiler ash (Si + Ca) geopolymerisation system. Materials 2015, 8, 2227–2242. [Google Scholar] [CrossRef]
- Abdullah, A.; Hussin, K.; Abdullah, M.M.; Yahya, Z.; Sochacki, W.; Razak, R.A.; Błoch, K.; Fansuri, H. The Effects of Various Concentrations of NaOH on the Inter-Particle Gelation of a Fly Ash Geopolymer Aggregate. Materials 2021, 14, 1111. [Google Scholar] [CrossRef] [PubMed]
XRF | |
---|---|
Na2O | 4.5 |
MgO | 9.96 |
Al2O3 | 13.99 |
SiO2 | 41.97 |
CaO | 5.36 |
ZnO | 1.82 |
FeO | 13.69 |
LoI | 8.54 |
Sum of oxide content | 99.83% |
Curing Conditions | Mixtures | S/L | DM (g) | Metakaolin % | Cement % | NaOH Sol. (M) | NaOH Solution (g) | Sodium Silicate Solution(g) | % NaOH to Sodium Silicate Solution | 72 h Comp. Strength (MPa) | Parameters Studied |
---|---|---|---|---|---|---|---|---|---|---|---|
Environment In Ambient Temperature For 72 h | CyDIA-0015g | 2.61 | 150.00 | 25% | 8% | 2 | 38.33 | 38.33 | 50:50 | 1.12 | Effect of NaOH concentration |
CyDIA-0014g | 2.61 | 150.00 | 25% | 8% | 4 | 38.33 | 38.33 | 50:50 | 1.64 | ||
CyDIA-0013g | 2.61 | 150.00 | 25% | 8% | 6 | 38.33 | 38.33 | 50:50 | 4.22 | ||
CyDIA-0012g | 2.61 | 150.00 | 25% | 8% | 8 | 38.33 | 38.33 | 50:50 | 9.34 | ||
CyDIA-0007g | 2.61 | 150.00 | 25% | 8% | 10 | 38.33 | 38.33 | 50:50 | 9.43 | ||
CyDIA-0008g | 2.61 | 150.00 | 25% | 8% | 10 | 45.99 | 30.66 | 60:40 | 4.14 | Effect of Na2SiO3 to NaOH ratio | |
CyDIA-0009g | 2.61 | 150.00 | 25% | 8% | 10 | 53.66 | 23.00 | 70:30 | 7.25 | ||
CyDIA-0010g | 2.61 | 150.00 | 25% | 8% | 10 | 69 | 7.66 | 90:10 | 4.46 | ||
CyDIA-0011g | 2.61 | 150.00 | 25% | 8% | 10 | 76.67 | 0.00 | 100:0 | 3.27 |
Curing Conditions | Mixtures | S/L | DM (g) | Metakaolin % | NaOH Sol. Molarity (M) | NaOH Solution (g) | Sodium Silicate Solution (g) | % NaOH to Sodium Silicate Solution | 72 h Comp. Strength (MPa) | Parameter Studied |
---|---|---|---|---|---|---|---|---|---|---|
Oven 50 °C for 72 h | CyDIA-0009e | 1.54 | 70.00 | 90% | 10 | 43.33 | 43.33 | 50:50 | 13.38 | Effect of diabase mud |
CyDIA-0008e | 1.67 | 115.00 | 74% | 10 | 60.00 | 60.00 | 50:50 | 13.58 | ||
CyDIA-0007e | 1.82 | 125.00 | 60% | 10 | 55.00 | 55.00 | 50:50 | 7.93 | ||
CyDIA-0006e | 2.00 | 135.00 | 48% | 10 | 50.00 | 50.00 | 50:50 | 7.93 | ||
CyDIA-0004e | 2.67 | 155.00 | 29% | 10 | 37.50 | 37.50 | 50:50 | 6.37 | ||
CyDIA-0001f | 2.67 | 150.00 | 33% | 10 | 37.50 | 37.50 | 50:50 | 6.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spanou, M.; Luhar, S.; Savva, P.; Ioannou, S.; Petrou, M.F.; Luhar, I.; Nicolaides, D. Diabase Mud-Based Geopolymer Paste: Formulation and Properties. Mater. Proc. 2021, 5, 77. https://doi.org/10.3390/materproc2021005077
Spanou M, Luhar S, Savva P, Ioannou S, Petrou MF, Luhar I, Nicolaides D. Diabase Mud-Based Geopolymer Paste: Formulation and Properties. Materials Proceedings. 2021; 5(1):77. https://doi.org/10.3390/materproc2021005077
Chicago/Turabian StyleSpanou, Maria, Salmabanu Luhar, Pericles Savva, Socrates Ioannou, Michael F. Petrou, Ismail Luhar, and Demetris Nicolaides. 2021. "Diabase Mud-Based Geopolymer Paste: Formulation and Properties" Materials Proceedings 5, no. 1: 77. https://doi.org/10.3390/materproc2021005077
APA StyleSpanou, M., Luhar, S., Savva, P., Ioannou, S., Petrou, M. F., Luhar, I., & Nicolaides, D. (2021). Diabase Mud-Based Geopolymer Paste: Formulation and Properties. Materials Proceedings, 5(1), 77. https://doi.org/10.3390/materproc2021005077