LCA and LCC of Emerging and Incumbent Technologies on Energy Harvesters †
Abstract
:1. Introduction
2. LCA—LCC Inventories for Materials and Devices for Energy Harvesting
2.1. Piezoelectric Material and Device
2.2. Thermoelectric Materials and Devices
2.3. Inventories for LCC
3. Results for the Performed LCA—LCC Analyses
3.1. Piezoelectric Device
3.2. Thermoelectric Devices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- IEA. Global Energy Review 2021. Paris, 2021. Available online: https://www.iea.org/reports/global-energy-review-2021 (accessed on 10 June 2021).
- Kiziroglou, M.; Yeatman, E. Materials and techniques for energy harvesting. In Functional Materials for Sustainable Energy Applications; Woodhead Publishing: Cambridge, UK, 2012; pp. 541–572. [Google Scholar]
- Dickert, F.; Latif, U. Piezoelectric Effect. In Comprehensive Supramolecular Chemistry II; Elsevier: Amsterdam, The Netherlands, 2017; pp. 201–211. [Google Scholar] [CrossRef]
- Ong, K.S.; Jiang, L.; Lai, K. Thermoelectric Energy Conversion. Compr. Energy Syst. 2018, 4, 794–815. [Google Scholar] [CrossRef]
- European Commission. Study on the EU’s list of Critical Raw Materials; European Commission: Luxembourg, 2020. [Google Scholar]
- European Commission. Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Hauschild, M.; Rosenbaum, R.; Olsen, S.I. Life Cycle Assessment Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Hunkeler, D.; Lichtenvort, K.; Rebitzer, G. Environmental Life Cycle Costing; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Toniolo, S.; Tosato, R.; Gambaro, F.; Ren, J. Life cycle thinking tools: Life cycle assessment, life cycle costing and social life cycle assessment. In Life Cycle Sustainability Assessment for Decision-Making; Ren, J., Toniolo, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 39–56. [Google Scholar] [CrossRef]
- Bosso, N.; Magelli, M.; Zampieri, N. Application of low-power energy harvesting solutions in the railway field: A review. Veh. Syst. Dyn. 2021, 59, 841–871. [Google Scholar] [CrossRef]
- Fang, H.; Liu, J.; Xu, Z.; Dong, L.; Wang, L.; Chen, D.; Cai, B.; Liu, Y. Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron. J. 2006, 37, 1280–1284. [Google Scholar] [CrossRef]
- Tran, N.; Ghayesh, M.; Arjomandi, M. Ambient vibration energy harvesters: A review on nonlinear techniques for performance enhancement. Int. J. Eng. Sci. 2018, 127, 162–185. [Google Scholar] [CrossRef]
- Anton, S.R.; Sodano, H.A. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 2008, 16, R1–R21. [Google Scholar] [CrossRef]
- Ibn-Mohammed, T.; Koh, S.C.L.; Reaney, I.; Acquaye, A.; Wang, D.; Taylor, S.; Genovese, A. Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead-based (lead zirconate titanate) versus lead-free (potassium sodium niobate) piezoelectric ceramics. Energy Environ. Sci. 2016, 9, 3495–3520. [Google Scholar] [CrossRef] [Green Version]
- Tseng, K.J.; Du, J.; Hu, J. Piezoelectric transformer with high power density and multiple outputs. Electron. Lett. 2004, 40, 786. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Z.-G.; Dargusch, M.S.; Zou, J. High Performance Thermoelectric Materials: Progress and Their Applications. Adv. Energy Mater. 2017, 8, 1701797. [Google Scholar] [CrossRef]
- Van Toan, N.; Tuoi, T.; Ono, T. Thermoelectric generators for heat harvesting: From material synthesis to device fabrication. Energy Convers. Manag. 2020, 225, 113442. [Google Scholar] [CrossRef]
- Rogl, G.; Rogl, P. Skutterudites, a most promising group of thermoelectric materials. Curr. Opin. Green Sustain. Chem. 2017, 4, 50–57. [Google Scholar] [CrossRef]
- Iyer, R.K.; Pilla, S. Environmental profile of thermoelectrics for applications with continuous waste heat generation via life cycle assessment. Sci. Total Environ. 2021, 752, 141674. [Google Scholar] [CrossRef] [PubMed]
- Turton, R.; Shaeiwitz, J.; Bhattacharyya, D.; Whiting, W. Analysis, Synthesis, and Design of Chemical Processes, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2018. [Google Scholar]
- Eurostat. Electricity Price Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_price_statistics#Electricity_prices_for_non-household_consumers (accessed on 15 May 2021).
- LeBlanc, S.; Yee, S.; Scullin, M.; Dames, C.; Goodson, K. Material and manufacturing cost considerations for thermoelectrics. Renew. Sustain. Energy Rev. 2014, 32, 313–327. [Google Scholar] [CrossRef]
- Martinez-Sanchez, V.; Kromann, M.A.; Astrup, T.F. Life cycle costing of waste management systems: Overview, calculation principles and case studies. Waste Manag. 2015, 36, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Cewep. Confederation of European to Waste-to-Energy Plants. 2020. Available online: https://www.cewep.eu/landfill-taxes-and-bans/ (accessed on 15 May 2021).
- European Parliament and the Council. Directive 2012/19/EU on Waste Electrical and Electronic Equipment (WEEE). July 2012. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02012L0019-20180704 (accessed on 10 June 2021).
- European Parliament and the Council. Directive 2011/65/EU on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Text with EEA Relevance. June 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02011L0065-20160715&from=EN (accessed on 10 June 2021).
BT | Cost | SK | Cost | Units |
---|---|---|---|---|
p-type leg | 1.466 | p-type leg | 0.515 | €/g |
n-type leg | 1.467 | n-type leg | 0.464 | €/g |
Alumina plates | 0.933 | Alumina plates | 0.162 | €/g |
Copper tabs | 0.096 | Copper tabs | 0.088 | €/g |
TE module | 35.526 | TE module | 23.373 | €/item |
TE (0.0013 W/W/cm2) | 1.606 | TE (0.0022 W/W/cm2) | 0.695 | €/FU |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malagnino, A.; Rostagno, M.; Amaro, G.G.; Vlysidis, A.; Gkika, A.; Koumoulos, E.; Qin, Y. LCA and LCC of Emerging and Incumbent Technologies on Energy Harvesters. Mater. Proc. 2021, 5, 21. https://doi.org/10.3390/materproc2021005021
Malagnino A, Rostagno M, Amaro GG, Vlysidis A, Gkika A, Koumoulos E, Qin Y. LCA and LCC of Emerging and Incumbent Technologies on Energy Harvesters. Materials Proceedings. 2021; 5(1):21. https://doi.org/10.3390/materproc2021005021
Chicago/Turabian StyleMalagnino, Ada, Maddalena Rostagno, Giuseppe Gaspare Amaro, Anestis Vlysidis, Anastasia Gkika, Elias Koumoulos, and Yi Qin. 2021. "LCA and LCC of Emerging and Incumbent Technologies on Energy Harvesters" Materials Proceedings 5, no. 1: 21. https://doi.org/10.3390/materproc2021005021
APA StyleMalagnino, A., Rostagno, M., Amaro, G. G., Vlysidis, A., Gkika, A., Koumoulos, E., & Qin, Y. (2021). LCA and LCC of Emerging and Incumbent Technologies on Energy Harvesters. Materials Proceedings, 5(1), 21. https://doi.org/10.3390/materproc2021005021