Colloidal Characteristics of Molybdenum Blue Nanoparticles Dispersion for Catalytic Applications †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Molybdenum Blue Dispersion
2.3. Molybdenum Blue Dispersion Characterization
3. Results
3.1. pH Region of Aggregative Stability
3.2. Electrokinetic Potential
3.3. Rheological Properties
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Zhang, T.; Ying, P.; Zheng, M.; Wu, W.; Xia, L.; Li, T.; Wang, X.; Li, C. A novel catalyst for hydrazine decomposition: Molybdenum carbide supported on γ-Al2O3. Chem. Commun. 2002, 288–289. [Google Scholar] [CrossRef] [PubMed]
- Ji, N.; Zhang, T.; Zheng, M.; Wang, A.; Wang, H.; Wang, X.; Shu, Y.; Stottlemyer, A.L.; Chen, J.G. Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts. Catal Today 2009, 147, 77–85. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, P.; Duan, J.; Han, J.; Lou, H.; Zheng, X.; Hong, H. Carbon nanofibers supported molybdenum carbide catalysts for hydrodeoxygenation of vegetable oils. RSC Adv. 2013, 3, 17458–17491. [Google Scholar] [CrossRef]
- Maméde, A.S.; Giraudon, J.-M.; Löfberg, A.; Leclercq, L.; Leclercq, G. Hydrogenation of toluene over β-Mo2C in the presence of thiophene. Appl. Catal. A Gen. 2002, 227, 73. [Google Scholar] [CrossRef]
- Ardakani, S.J.; Liu, X.; Smith, K.J. Hydrogenation and ring opening of naphthalene on bulk and supported Mo2C catalysts. Appl. Catal. A Gen. 2007, 324, 9. [Google Scholar] [CrossRef]
- Christofoletti, T.; Assaf, J.; Assaf, E. Methane steam reforming on supported and nonsupported molybdenum carbides. Chem. Eng. J. 2005, 106, 97–103. [Google Scholar] [CrossRef]
- La Mont, D.C.; Thomson, W.J. Dry reforming kinetics over a bulk molybdenum carbide catalyst. Chem. Eng. Sci. 2005, 60, 3553–3559. [Google Scholar] [CrossRef]
- Tominaga, H.; Nagai, M. Theoretical study of methane reforming on molybdenum carbide. Appl. Catal. A Gen. 2007, 328, 35–42. [Google Scholar] [CrossRef]
- Liu, P.; Rodriguez, J.A. Water-gas-shift reaction on molybdenum carbide surfaces: Essential role of the oxycarbide. J. Phys. Chem. B 2006, 110, 19418–19425. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, H.; Nagai, M. Density functional theory of water-gas shift reaction on molybdenum carbide. J. Phys. Chem. B 2005, 109, 20415–20423. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Duan, J.; Chen, P.; Lou, H.; Zheng, X.; Hong, H. Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils. Green Chem. 2011, 13, 2561–2568. [Google Scholar] [CrossRef]
- Gavrilova, N.N.; Nazarov, V.V.; Skudin, V.V. Synthesis of Membrane Catalysts Based on Mo2C. Kinet. Catal. 2015, 56, 670–680. [Google Scholar] [CrossRef]
- Gavrilova, N.; Dyakonov, V.; Myachina, M.; Nazarov, V.; Skudin, V. Synthesis of Mo2C by Thermal Decomposition of Molybdenum Blue Nanoparticles. Nanomaterials 2020, 10, 2053. [Google Scholar] [CrossRef] [PubMed]
- Gavrilova, N.; Myachina, M.; Harlamova, D.; Nazarov, V. Synthesis of Molybdenum Blue Dispersions Using Ascorbic Acid as Reducing Agent. Colloids Interfaces 2020, 4, 24. [Google Scholar] [CrossRef]
- Henry, D.C.; Lapworth, A. The cataphoresis of suspended particles. Part I—The equation of cataphoresis. Proc. R. Soc. Lond. Ser. A 1931, 133, 106–129. [Google Scholar]
- Ohshima, H. A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles. J. Colloid Interface Sci. 1994, 168, 269–271. [Google Scholar] [CrossRef]
- Kosmulski, M. Surface Charging and Points of Zero Charge; CRC Press: Boca Raton, FL, USA, 2009; p. 1092. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrilova, N.; Myachina, M.; Poluboyarinova, K.; Novaeva, E.; Nazarov, V. Colloidal Characteristics of Molybdenum Blue Nanoparticles Dispersion for Catalytic Applications. Mater. Proc. 2021, 4, 24. https://doi.org/10.3390/IOCN2020-07893
Gavrilova N, Myachina M, Poluboyarinova K, Novaeva E, Nazarov V. Colloidal Characteristics of Molybdenum Blue Nanoparticles Dispersion for Catalytic Applications. Materials Proceedings. 2021; 4(1):24. https://doi.org/10.3390/IOCN2020-07893
Chicago/Turabian StyleGavrilova, Natalia, Maria Myachina, Ksenia Poluboyarinova, Ekaterina Novaeva, and Victor Nazarov. 2021. "Colloidal Characteristics of Molybdenum Blue Nanoparticles Dispersion for Catalytic Applications" Materials Proceedings 4, no. 1: 24. https://doi.org/10.3390/IOCN2020-07893
APA StyleGavrilova, N., Myachina, M., Poluboyarinova, K., Novaeva, E., & Nazarov, V. (2021). Colloidal Characteristics of Molybdenum Blue Nanoparticles Dispersion for Catalytic Applications. Materials Proceedings, 4(1), 24. https://doi.org/10.3390/IOCN2020-07893