NiOOH/FeOOH Supported on Reduced Graphene Oxide Composite Electrodes for Ethanol Electrooxidation †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Composite Graphite/Epoxy Electrodes
2.2. Electrosynthesis of Iron-Nickel Oxyhydroxide Microparticles on Reduced Graphene Oxide
2.3. Characterization by Scanning Electron Microscopy
2.4. Measuring Procedure
3. Results
3.1. Caracterization of Composite Surface of EG/RGO/NiOOH-FeOOH
3.2. Electrochemical Application of Modified Electrode in Alcohol Oxidation
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Graphene-based composite materials. J. Mater. Chem. A 2017, 5, 12653–12672. [Google Scholar] [CrossRef]
- Sedenho, G.C.; Paim, L.L.; Stradiotto, N.R. Simple and direct potentiometric determination of potassium ions in biodiesel microemulsions at a glassy carbon electrode modified with nickel (II) hexacyanoferrate nanoparticles. Anal. Methods 2013, 5, 8334–8341. [Google Scholar] [CrossRef]
- El Gabaly, F.; McCarty, K.F.; Bluhm, H.; McDaniel, A.H. Oxidation stages of Ni electrodes in solid oxide fuel cell environments. Phys. Chem. Chem. Phys. 2013, 15, 8334–8341. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.W.; Dai, C.S.; Hung, K.C. High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes. Sci. Rep. 2014, 4, 7274. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.P.J.; Emeterio, M.B.S.; Sá, A.C.; Paim, L.L.; Valle, M. Methanol, Ethanol, and Glycerol Oxidation by Graphite-Epoxy Composite Electrodes with Graphene-Anchored Nickel Oxyhydroxide Nanoparticles. Proceedings 2020, 42, 5. [Google Scholar]
- Eshghi, A.; Behbahani, E.S.; Kheirmand, M.; Ghaedi, M. Pd, Pd–Ni and Pd–Ni–Fe nanoparticles anchored on MnO2/Vulcan as efficient ethanol electro-oxidation anode catalysts. Int. J. Hydrogen Energy 2019, 44, 28194–28205. [Google Scholar] [CrossRef]
- Li, S.J.; Guo, W.; Yuan, B.Q.; Zhang, D.J.; Feng, Z.Q.; Du, J.M. Assembly of ultrathin NiOOH nanosheets on electrochemically pretreated glassy carbon electrode for electrocatalytic oxidation of glucose and methanol. Sens. Actuators B Chem. 2017, 240, 398–407. [Google Scholar] [CrossRef]
- De Sousa, M.S.P.; De Oliveira, J.P.J.; De Sá, A.C.; Da Silva, M.J.; Dos Santos, R.J.; Paim, L.L. Impedimetric sensor for pentoses based on electrodeposited carbon nanotubes and molecularly imprinted poly-o-phenylenediamine. ECS J. Solid State Sci. Technol. 2020, 9, 041006. [Google Scholar] [CrossRef]
- Chen, L.; Tang, Y.; Wang, K.; Liu, C.; Luo, S. Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem. Commun. 2011, 13, 133–137. [Google Scholar] [CrossRef]
- de Sá, A.C.; Paim, L.L.; Stradiotto, N.R. Sugars electrooxidation at glassy carbon electrode decorate with multi-walled carbon nanotubes with nickel oxy-hydroxide. Int. J. Electrochem. Sci. 2014, 9, 7746–7762. [Google Scholar]
- Ballottin, D.P.M.; Paim, L.L.; Stradiotto, N.R. Determination of Glycerol in Biodiesel Using a Nickel (II) Oxyhydroxide Chemically Modified Electrode by Cyclic Voltammetry. Electroanalysis 2013, 25, 1751–1755. [Google Scholar] [CrossRef]
- Shabnam, L.; Faisal, S.N.; Roy, A.K.; Gomes, V.G. Nickel-Nanoparticles on Doped Graphene: A Highly Active Electrocatalyst for Alcohol and Carbohydrate Electrooxidation for Energy Production. ChemElectroChem 2018, 5, 3799–3808. [Google Scholar] [CrossRef]
- Berchmans, S.; Gomathi, H.; Rao, G.P. Electrooxidation of alcohols and sugars catalysed on a nickel oxide modified glassy carbon electrode. Electroanal. Chem. 1995, 394, 267–270. [Google Scholar] [CrossRef]
- Qiu, Y.; Xin, L.; Li, W. Electrocatalytic oxygen evolution over supported small amorphous Ni–Fe nanoparticles in alkaline electrolyte. Langmuir 2014, 30, 7893–7901. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, J.P.J.d.; Sá, A.C.d.; Paim, L.L. NiOOH/FeOOH Supported on Reduced Graphene Oxide Composite Electrodes for Ethanol Electrooxidation. Mater. Proc. 2020, 2, 17. https://doi.org/10.3390/CIWC2020-06840
Oliveira JPJd, Sá ACd, Paim LL. NiOOH/FeOOH Supported on Reduced Graphene Oxide Composite Electrodes for Ethanol Electrooxidation. Materials Proceedings. 2020; 2(1):17. https://doi.org/10.3390/CIWC2020-06840
Chicago/Turabian StyleOliveira, João Pedro Jenson de, Acelino Cardoso de Sá, and Leonardo Lataro Paim. 2020. "NiOOH/FeOOH Supported on Reduced Graphene Oxide Composite Electrodes for Ethanol Electrooxidation" Materials Proceedings 2, no. 1: 17. https://doi.org/10.3390/CIWC2020-06840
APA StyleOliveira, J. P. J. d., Sá, A. C. d., & Paim, L. L. (2020). NiOOH/FeOOH Supported on Reduced Graphene Oxide Composite Electrodes for Ethanol Electrooxidation. Materials Proceedings, 2(1), 17. https://doi.org/10.3390/CIWC2020-06840