Investigation of the Dielectric Response of PPy/V2C MXene–ZnO Using Quantum Mechanical Calculations †
Abstract
:1. Introduction
2. Computational Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, Q.-K.; Zhong, S.-L.; Pei, J.-Y.; Zhao, Y.; Zhang, D.-L.; Liu, D.-F.; Zhang, Y.-X.; Dang, Z.-M. Recent Progress and Future Prospects on All-Organic Polymer Dielectrics for Energy Storage Capacitors. Chem. Rev. 2022, 122, 3820–3878. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Y.; Zhao, X. The influence of dopant on the dielectric properties of flexible polypyrrole composites. J. Text. Inst. 2017, 108, 1280–1284. [Google Scholar] [CrossRef]
- Adekoya, G.J.; Sadiku, R.E.; Ray, S.S. Nanocomposites of PEDOT:PSS with Graphene and its Derivatives for Flexible Electronic Applications: A Review. Macromol. Mater. Eng. 2021, 306, 2000716. [Google Scholar] [CrossRef]
- Ezika, A.C.; Sadiku, E.R.; Idumah, C.I.; Ray, S.S.; Adekoya, G.J.; Odera, R.S. Recently emerging trends in MXene hybrid conductive polymer energy storage nanoarchitectures. Polym.-Plast. Technol. Mater. 2022, 61, 861–887. [Google Scholar] [CrossRef]
- Adekoya, G.J.; Adekoya, O.C.; Sadiku, R.E.; Ray, S.S. Structure-property relationship and nascent applications of thermoelectric PEDOT:PSS/carbon composites: A review. Compos. Commun. 2021, 27, 100890. [Google Scholar] [CrossRef]
- Ezika, A.C.; Sadiku, E.R.; Idumah, C.I.; Ray, S.S.; Hamam, Y. On energy storage capacity of conductive MXene hybrid nanoarchitectures. J. Energy Storage 2022, 45, 103686. [Google Scholar] [CrossRef]
- Ezika, A.C.; Sadiku, E.R.; Ray, S.S.; Hamam, Y.; Folorunso, O.; Adekoya, G.J. Emerging advancements in polypyrrole MXene hybrid nanoarchitectonics for capacitive energy storage applications. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1521–1540. [Google Scholar] [CrossRef]
- Ezika, A.C.; Sadiku, E.R.; Ray, S.S.; Hamam, Y.; Adekoya, G.J.; Lolu, O.J. Fabrication and investigation of electrically conductive spark plasma sintered polypyrrole-based MXene–Ti3C2Tx hybrid nanoarchitectonics for electrode material. J. Mater. Sci. Mater. Electron. 2023, 34, 168. [Google Scholar] [CrossRef]
- Ezika, A.C.; Sadiku, E.R.; Adekoya, G.J.; Hamam, Y.; Sinha Ray, S. Response surface optimization and finite element homogenization study of the effective elastic modulus and electrical conductivity of MXene-polypyrrole hybrid nanocomposite as electrode material for electronic energy storage devices. Polym. Eng. Sci. 2022, 63, 338–352. [Google Scholar] [CrossRef]
- He, Z.-Z.; Yu, X.; Yang, J.-H.; Zhang, N.; Huang, T.; Wang, Y.; Zhou, Z.-W. Largely enhanced dielectric properties of poly(vinylidene fluoride) composites achieved by adding polypyrrole-decorated graphene oxide. Compos. Part A Appl. Sci. Manuf. 2018, 104, 89–100. [Google Scholar] [CrossRef]
- Mazhar, S.; Qarni, A.A.; Ul Haq, Y.; Ul Haq, Z.; Murtaza, I. Promising PVC/MXene based flexible thin film nanocomposites with excellent dielectric, thermal and mechanical properties. Ceram. Int. 2020, 46, 12593–12605. [Google Scholar] [CrossRef]
- Deng, Q.; Chen, B.; Bo, M.; Feng, Y.; Huang, Y.; Zhou, J. Interfacial fluorine migration-induced low leakage conduction in PVA based high-k composites with V2C MXene-SWCNT switchboard-like ceramic via ab initio MD simulations. J. Mater. Chem. C 2021, 9, 1051–1061. [Google Scholar] [CrossRef]
- Deng, Q.; Zhao, X.; Zhu, Q.; Bo, M.; Feng, Y. Reinforced dielectric response in polymer/V2C MXene composite high-insulation films enabled through dispersing ionic liquid. J. Electroceramics 2021, 46, 124–130. [Google Scholar] [CrossRef]
- Saadi, H.; Benzarti, Z.; Sanguino, P.; Hadouch, Y.; Mezzane, D.; Khirouni, K.; Abdelmoula, N.; Khemakhem, H. Improving the optical, electrical and dielectric characteristics of ZnO nanoparticles through (Fe + Al) addition for optoelectronic applications. Appl. Phys. A 2022, 128, 691. [Google Scholar] [CrossRef]
- Kaur, D.; Bharti, A.; Sharma, T.; Madhu, C. Dielectric Properties of ZnO-Based Nanocomposites and Their Potential Applications. Int. J. Opt. 2021, 2021, 9950202. [Google Scholar] [CrossRef]
- Ul Haq, Y.; Murtaza, I.; Mazhar, S.; Ahmad, N.; Qarni, A.A.; Ul Haq, Z.; Khan, S.A.; Iqbal, M. Investigation of improved dielectric and thermal properties of ternary nanocomposite PMMA/MXene/ZnO fabricated by in-situ bulk polymerization. J. Appl. Polym. Sci. 2020, 137, 49197. [Google Scholar] [CrossRef]
- Vaishnav, D.; Goyal, R.K. Thermal and Dielectric Properties of High Performance Polymer/ZnO Nanocomposites. IOP Conf. Ser. Mater. Sci. Eng. 2014, 64, 012016. [Google Scholar] [CrossRef]
- Choudhary, S. Dielectric dispersion and relaxations in (PVA-PEO)-ZnO polymer nanocomposites. Phys. B Condens. Matter 2017, 522, 48–56. [Google Scholar] [CrossRef]
- Lei, H.; Li, X.; Wang, J.; Song, Y.; Tian, G.; Huang, M.; Wu, D. DFT and molecular dynamic simulation for the dielectric property analysis of polyimides. Chem. Phys. Lett. 2022, 786, 139131. [Google Scholar] [CrossRef]
- Tang, Z.; Chang, C.; Bao, F.; Tian, L.; Liu, H.; Wang, M.; Zhu, C.; Xu, J. Feasibility of Predicting Static Dielectric Constants of Polymer Materials: A Density Functional Theory Method. Polymers 2021, 13, 284. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Lin, Y.-C.; Chang, E.-C.; Kuo, C.-C.; Ueda, M.; Chen, W.-C. Investigation of the structure–dielectric relationship of polyimides with ultralow dielectric constant and dissipation factors using density functional theory. Polymer 2022, 256, 125184. [Google Scholar] [CrossRef]
- Pieters, P.F.; Lainé, A.; Li, H.; Lu, Y.-H.; Singh, Y.; Wang, L.-W.; Liu, Y.; Xu, T.; Alivisatos, A.P.; Salmeron, M. Multiscale Characterization of the Influence of the Organic–Inorganic Interface on the Dielectric Breakdown of Nanocomposites. ACS Nano 2022, 16, 6744–6754. [Google Scholar] [CrossRef]
- Feng, Y.; Zhou, F.; Bo, M.; Huang, Y.; Deng, Q.; Peng, C. Enabling High Dielectric Response in PVDF/V2C MXene–TiO2 Composites Based on Nontypical V–F–Ti Bonding and Fermi-Level Overlapping Mechanisms. J. Phys. Chem. C 2020, 124, 27780–27789. [Google Scholar] [CrossRef]
- Deng, Q.; Zhou, F.; Bo, M.; Feng, Y.; Huang, Y.; Peng, C. Remarkably improving dielectric response of polymer/hybrid ceramic composites based on 0D/2D-stacked CuO/V2C MXene heterojunction. Appl. Surf. Sci. 2021, 545, 149008. [Google Scholar] [CrossRef]
- Deng, Q.; Huang, Y.; Chen, B.; Bo, M.; Feng, Y. Conductive V2C MXene and paralelectric SrTiO3 containing polymer composites with high dielectric constant. Colloids Surf. A Physicochem. Eng. Asp. 2022, 632, 127763. [Google Scholar] [CrossRef]
- Feng, Y.; Qiu, H.; Mao, B.; Bo, M.; Deng, Q. Preparation of hybrid ceramic/PVC composites showing both high dielectric constant and breakdown strength ascribed to interfacial effect between V2C MXene and Cu2O. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127650. [Google Scholar] [CrossRef]
- Deng, Q.; Xiong, W.; Mao, B.; Bo, M.; Feng, Y. Enhanced dielectric response of ternary polymeric composite films via interfacial bonding between V2C MXene and wide-bandgap ZnS. Ceram. Int. 2021, 47, 32938–32946. [Google Scholar] [CrossRef]
- Becke, A.D.; Edgecombe, K.E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezika, A.C.; Sadiku, E.R.; Adekoya, G.J.; Ray, S.S.; Hamam, Y. Investigation of the Dielectric Response of PPy/V2C MXene–ZnO Using Quantum Mechanical Calculations. Mater. Proc. 2023, 14, 70. https://doi.org/10.3390/IOCN2023-14467
Ezika AC, Sadiku ER, Adekoya GJ, Ray SS, Hamam Y. Investigation of the Dielectric Response of PPy/V2C MXene–ZnO Using Quantum Mechanical Calculations. Materials Proceedings. 2023; 14(1):70. https://doi.org/10.3390/IOCN2023-14467
Chicago/Turabian StyleEzika, Anthony Chidi, Emmanuel Rotimi Sadiku, Gbolahan Joseph Adekoya, Suprakas Sinha Ray, and Yskandar Hamam. 2023. "Investigation of the Dielectric Response of PPy/V2C MXene–ZnO Using Quantum Mechanical Calculations" Materials Proceedings 14, no. 1: 70. https://doi.org/10.3390/IOCN2023-14467
APA StyleEzika, A. C., Sadiku, E. R., Adekoya, G. J., Ray, S. S., & Hamam, Y. (2023). Investigation of the Dielectric Response of PPy/V2C MXene–ZnO Using Quantum Mechanical Calculations. Materials Proceedings, 14(1), 70. https://doi.org/10.3390/IOCN2023-14467